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ABSTRACT This research explores the different avenues in machine learning to classify Sinhala image posts. Image posts 
in social media are one big weapon that conveys information directly to people. Image posts contain both visuals and text. 
English based research work is common in this regard, but only a handful can be seen from other languages. The target 
language was a low-resource language, Sinhala. Unsupervised algorithms were used to classify image posts and supervised 
algorithms were involved classifying manually extracted text in image posts. The classification decides whether the posts 
are violent or nonviolent. The trained supervised models were tested with interpretability models to identify the words that 
cause the decision of violent or nonviolent. The findings reveal supervised algorithms perform better than unsupervised 
algorithms in classifying image posts. However, improved results can be obtained by increasing the size and the variety of 
the dataset. 
 
KEYWORDS: Deep learning, machine learning, social media, violence detection

I. INTRODUCTION 

People use social media as a powerful tool for communication. 
The birth of 2-way communication began with Web 2.0 and has 
been evolved, so now people who use social media can modify 
the contents as well as provide their thoughts towards 
enormous topics [30]. As with useful and entertaining content, 
social media also provides a platform for users who spread 
violent content that disperses violence to the physical world. 
One of the earliest examples of such behaviour can be pointed 
out through a case study done in 1997, which was based on an 
incident in Bangladesh where violence originated in social 
media [42]. Also in 2008, image posts about the resentment of 
immigrants in Italy were circulated through social media [45]. 
 
As images can talk to people way faster than the words, image 
posts have become very popular in social media to convey 
ideas; to spread good as well as the opposite. Hence, image 
posts shared on social media have become a powerful 
mechanism to disperse violence. They contain visual and text 
elements. One of the main concerns even from the early days 
of social media is to identify smart mechanisms for early 
detection of such poor posts and help to clean the social media 
platforms from such contents. Based on such concerns, there 
are many research attempts. However, most of such findings 
are based around image posts having text elements in the 
English language. A handful of research can be found from 
other languages, and we have listed them in section 2. 

 

In natural language processing, languages are categorized by 
whether they are high or low resource. Low resource languages 
lack data that can be used for machine learning (ML) or other 
processing, and high-resource languages are rich in available 
data. With the birth of the Unicode character system, usage of 
law resources languages has accelerated in a noticeable way. 
That directly affects the usage of such languages in social 
media as well. Image posts with violence; what we are 
interested in this research can also be seen with text elements 
in such low resource languages. 
 
In this work, we aimed to work on a low-resource language and 
chose ‘Sinhala’ as the preferred low-resource language. We 
concern text elements inside Sinhala image posts. As the 
literature revealed most of the text classification research works 
focused on “Sinhala” were based on Facebook comments or 
Tweets. In those works, they have used the row text form user 
comments. This research is different from the input from most 
of such research. Most of the research on the text classification 
connects with ML techniques since data are concerned as the 
main resource at hand in decision making [23]. Going along the 
same line, this research also focused on using unsupervised and 
supervised ML techniques to identify the desired image posts. 
 
This research work has mainly four phases. First, we modified 
the dataset introduced in previous research to include a 
balanced dataset that provides violent and nonviolent image 
posts [20]. Then, we retrained the unsupervised models as an 
anomaly detection problem introduced in earlier research on 
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the new dataset [20]. Next, we used supervised machine 
learning algorithms such as shallow learning and deep learning 
(DL) to classify the manually extracted text. Going beyond 
acquiring traditional training testing accuracies as goodness of 
measures, as the last phase, in this research we tried using 
explainable AI processes that allow human users to trust the 
results and output created by ML algorithms. By following the 
phases, the aim of the research, which is on exploring the 
capabilities of supervised and unsupervised machine learning 
techniques to detect violent context in Sinhala images posted 
was achieved. 
 
For the convenience of the readers, this paper is arranged as 
follows. In the next section, we present the literature relevant 
to the current research. Section III lists used materials and 
methodologies in our work. In section IV, we present our 
research results and finally in section V we discuss our 
findings, present the drawn conclusions, and point out future 
possibilities.  
 
II. RELATED WORKS 

Violence detection in social media encompasses several 
distinct categories such as modality based, classification 
algorithm based, and language based. Modality-based violence 
detection has four distinct categories: text, images, videos, and 
multi-modal approaches that combine both textual and visual 
elements. However, this research primarily focuses on social 
media images, and we have not extensively discussed the 
techniques related to videos. In addition to the modality-based 
categorization, violence detection utilizes classification 
algorithms that employ ML and DL techniques. Furthermore, 
violence detection encompasses several language-based 
studies: English, Sinhala, and other low resource languages 
such as Arabic. The literature includes scholarly studies from 
the earliest publication in 2014 to the most recent. We present 
previous work by the language, the research work has been 
focused, from high level languages to low level languages. 
 
A. Related Research on English Language 

Hate speech is one way of spreading violence in social media. 
Different organizations, communities and social media sites 
have given different definitions to hate speech. Hate speech can 
be defined as a set of terms in a defined language that attacks a 
person or a group of people regarding religion, ethnicity, 
gender, sexual orientation. These hateful contents can persuade 
people to violence. Hate speech can be detected in several 
ways; however, many research studies were based on machine 
learning techniques as data is incorporated with the process. 
When it comes to ML, feature extraction is one of the main 
tasks in the process of decision making. Review works have 
pointed out, in ML, feature extraction for hate speech detection 
has been done using several approaches. Bag-of-words (BoW), 
term frequency - inverse document frequency (TF-IDF), rule 
based, n-grams, word embeddings, and topic classification 
methods are some of them. Further, the reviews discussed the 

contribution of shallow ML algorithms like support vector 
machines (SVM), naïve Bayesian (NB), logistic regression 
(LR), decision trees (DT) to the process of hate speech 
detection. Authors also point out the classification mechanisms 
used in detecting hate speech using deep learning algorithms. 
However, the comparisons among methods were not discussed 
as most of the newly created datasets are not published and 
publicly available [23, 55]. Anusha Chhabra and Dinesh Kumar 
Vishwakarma presented another review on multi-modal and 
multilingual social media hate content detection using shallow 
and deep learning ML models [10]. The findings of the survey 
point out; almost all the past reviews were conducted covering 
text-based hate speech detection studies, only two datasets 
were identified as multi-modal: text and image based, and DL 
approaches have outperformed shallow learning approaches. 

 
Going deeper into actual works performed for the English 
language, one of the earliest works proposed a mechanism 
using paragraph2vec [31] and continuous bag-of-words 
(CBOW) [39] for on-line user comments in Yahoo Finance 
website to hate speech detection. LR was used as the 
classification algorithm. The proposed method has given higher 
Area Under the Curve (AUC) than existing BoW methods [21]. 
 
Tweets are an interesting and powerful communication 
mechanism among a lot of people. Hate speech is also a 
frequent content in tweets. In a research study, hate speech in 
Tweets was investigated as a multi-class problem with three 
classes: hate (strongest hate level), offensive and neither [15]. 
Five shallow ML algorithms; LR, linear SVM, NB, DT, 
random forest (RF) were used to build the models. The results 
showed that LR and linear SVM performed better than the other 
three algorithms. L2 regularization (Ridge Regression) 
combined with LR improved the accuracy of the normal linear 
regression model. Going beyond the shallow algorithms, in [5], 
has used deep neural networks (DNN) to detect hate speech in 
tweets. Convolutional neural network (CNN), long short-term 
memory (LSTM) and fastText were used as feature spaces. 
Precision, recall and F1 score were used to compare the results. 
DNN achieved better results than shallow machine learning 
methods that utilized Char n-gram, TF-IDF and BoW 
embeddings. Higher results were obtained for utilizing random 
embeddings trained with LSTM and using them in a gradient 
boosted decision trees (GBDT) algorithm for classification. 
 
Another research used English as a language to test the 
performance of different feature extraction methods combined 
with Linear SVM model [36]. Character n grams, word n-
grams, and skip grams were used as feature extraction methods 
to detect hate speech. The Character 4-gram method has shown 
better results than other methods and achieved an accuracy of 
78%. However, previous research done by Malmasi et al., 
claimed better results than the 4-gram method using an oracle 
ensemble method with SVM [35]. Data is crucial for any 
machine learning process, so hate speech detection. Won et al. 
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has formed a protest image dataset [72]. They have employed 
a ResNet based model to violence detection in images and 
OpenFace based model [4] for emotion detection of people in 
violent scenes. They have found their model performs well in 
identifying violent scenes but does not perform well for 
emotion detection. As same, Sun et al. have created a new 
dataset that consists of still images related to violence and 
nonviolence [60]. They have used low level features as the 
multi views in their dataset along with features extracted from 
CNN. Low level features include dense scale invariant feature 
transform (DSIFT), histogram of oriented gradient (HOG) and 
local binary pattern (LBP). Authors have proposed new multi 
view maximum cross entropy discrimination. 
 
Watanabe et. al. introduced a new feature extraction method 
that incorporates sentiment, semantic, unigrams and pattern 
feature to identify hate text in Twitter [70]. They have used 
‘‘J48graft’’[69], SVM and RF as classifiers. ‘‘J48graft’’ has 
outperformed the other two classifiers. The new model 
‘‘J48graft’’ is an extension of decision tree grafting algorithm 
that increases the performance of the original algorithm with 
respect to both bias and variance. Further Z. Zhang and L. Luo 
addressed the problem of “long trail” in hateful text in social 
media, specifically in Twitter [73]. This research has proposed 
a model that incorporates two DNN architectures with CNN 
and Gated Recurrent Unit (GRU). This method has surpassed 
state-of-the-art methods on a Twitter dataset and established a 
new benchmark for future research that involves identifying 
hate speech. 
 
Gang violence, one of the other types that create textual as well 
as visual modality, can be defined as criminal and non-political 
acts of violence committed by a group of people who regularly 
engage in criminal activity against innocent people. Research 
was also carried out around this area and multi-modal 
approaches were used to detect images with gang violence [7]. 
They used tweets to create the datasets that were annotated with 
psychosocial codes, aggression, loss, and substance use. Text 
features were detected using unigram, bigram, Part-of-Speech 
(POS), and CNN features. Regional-based convolutional neural 
network (R-CNN) was used to detect image features. Fusion 
methods: early fusion and late fusion were used as multi-modal 
feature extraction methods. Text feature classification showed 
better results for loss code where image features classification 
showed better results for aggression and substance codes. 
Fusion method has shown promising results in this research. 
 
Amorim et al. introduced novelty detection in a temporal 
window using data fusion technique [3]. The objective of this 
approach is to detect comments that stand out from others 
within a given time frame considering both present and past 
comments. The dataset used in this study consists of posts from 
social media platform Twitter. Architecture comprises three 
key components: feature extraction from images and text, data 
fusion and unsupervised algorithm. Two distinct architectures 

were employed by rearranging the order of three key 
components. In the first architecture, input to the architecture 
is a data stream and MASK-RCNN [26] is the data fusion 
algorithm that converts the stream into textual representation. 
Then an autoencoder was employed to convert the textual 
representation into a vector and unsupervised algorithm was 
employed to classify the vectors. Second architecture, 
transform tweet images and texts into vectors using an 
autoencoder. Then an unsupervised algorithm identifies 
novelties using the vectors of images and texts. Finally, the 
AOM [1] fusion algorithm was employed to fuse the scores 
obtained from the unsupervised algorithm. Results depict that 
MASK-RCNN method outperforms AOM method. 
Suryawanshi et al. proposed a novel system to detect offensive 
memes by leveraging multi-modal data: text and images [63]. 
Going beyond text and visual datasets, authors have curated a 
new dataset including memes that contain both text and images. 
They suggested an early fusion method that incorporates 
stacked LSTM, BiLSTM and CNN for text features and visual 
geometry group (VGG-16) for visual features. Results 
demonstrate that the multi-modal approach has outperformed 
methods that incorporate only a single mode in terms of 
precision, F score and recall. 
 
In [41], a Bidirectional Encoder Representations from 
Transform (BERT)-based transfer learning method has been 
introduced for hate speech detection. The new method consists 
of different fine-tuning approaches, adding nonlinear layers, 
adding Bi-LSTM layers, and adding CNN layers. The fine-
tuned BERT-based method has produced better results than 
other state-of-the-art methods such as character n-gram with 
LR [67, 15], CBOW with multi-layer perceptron feed forward 
neural network [68], and original BERT model. Further in a 
comparative study conducted on hate speech detection using 14 
shallow and DL models with three commonly used datasets 
revealed that BERT-based models outperform other methods, 
and the TF-IDF-based classifier outperforms other DL models 
[34]. In another work, authors proposed an ensemble method 
that employs a combination of a fine-tuned BERT based model 
and a parallel recurrent model for multi aspect hate speech 
detection [37]. The proposed model was compared with pooled 
stacked Bi-LSTM, Bi-GRU models and ensemble models that 
combine the outputs of BERT, Bi-LSTM, and BI-GRU. The 
new model yielded better results compared to other methods. 
In a recent research work, authors have proposed a multi-modal 
fusion mechanism to combine both text and visual features for 
classifying fake news [65]. They have obtained a dataset along 
with their captions. A fine-tuned BERT model was used to 
classify text and higher results were obtained when compared 
with other DL models. Fine-tuned Xception network has 
obtained higher results for visual feature classification. 
Concatenate fusion techniques have obtained higher results 
than other fusion techniques. Fusion methods have achieved 
higher results than using text or visual solely. 
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To fulfil the lack of data sets containing fight images, authors 
in [2] have developed a new still fight image dataset collected 
from social media sites. They have used DL networks like 
VGG-16, residual network (ResNet50), ResNeXt50, and vision 
transformers (ViT Large 16) for the classification and ViT 
network has surpassed the results of other models. Most of the 
violent scene detection experiments were done for video-based 
datasets. As the next phase of the research, they have compared 
the results obtained for temporal models with frame-based 
models that were trained. Authors have done a cross-dataset 
experiment to evaluate which model generalizes well with all 
the datasets. Models that are trained for still images generalize 
better than the models trained for video-based datasets. We 
have studied a few but mostly relevant literature which were 
based on the English language. Compared to English, research 
work on other languages is limited. 
 
B. Related Research on Sinhala Language 

In one of the earliest works that touch Sinhala for the first time, 
English comments on a Sri Lankan website were investigated 
for hate speech [52]. NB, SVM, LR, DT, and k-means were 
tested with BoW and TF-IDF. NB with TF-IDF achieved a 
better F-score than other methods. In another previous study, 
researchers successfully identified racist Sinhala comments 
using a two-class SVM and n-gram approach, achieving over 
70% accuracy [19]. The dataset comprised randomly selected 
Sinhala comments from social media platforms. However, the 
performance declined as the dataset size increased. Identifying 
abusive comments in Sinhala language was also tried in 
research [54]. SVM, Multinomial NB (MNB), and random 
forest decision tree (RFDT) were used as classifiers. BoW, 
word n-gram, character n-gram, word skip-gram were the 
feature extraction mechanisms. MNB showed better results 
than other classifiers. Character tri-gram and character four-
gram showed better results than other feature extraction 
methods. Corpus-based approaches showed better results. 
 
A multi-level and two-level hate speech classification was done 
for Sinhala social media comments [53]. Authors have 
mentioned the difficulty in finding a proper data source for 
Sinhala. CNN and SVM were used as classification algorithms. 
CNN has shown higher results for binary classification. SVM 
has shown higher results for multi-level hate speech 
classification. According to the authors, a lower F1 score is 
achieved due to the imbalance dataset. 
 
For the first time in Sinhala language, images were used in [59] 
to classify Sinhala hate text in images. Several ML techniques 
were used to model the data. The text has been automatically 
extracted from images. MNB has shown better precision, 
recall, and F-measure than other ML techniques. 
 
Adapter-based pre-trained multilingual models have been 
proposed for code mixed and code-switched text classification 
that includes Sinhala text [49]. The cross-lingual representation 
of robustly optimized BERT pre-training approach (XLM-R), 
with basic fine-tuning, has outperformed all other models. 

XLM-R with adapters has further improved the results. 
BERTifying Sinhala is an analysis carried out to evaluate the 
performance of XLM-R, Language-Agnostic BERT Sentence 
Embedding (LaBSE), and Language Agnostic SEntence 
Representations (LASER) in Sinhala text classification [18]. 
There, XLM-R has performed better than other models. 
 
This summary covers the limited research carried out on 
violence detection in Sinhala. It highlights the pressing need for 
further research in low-level languages like Sinhala. 
 
C. Related Research on Other Languages 

Arabic, Bengali, Italy can be identified as other languages that 
have contributed more on hate speech detection research. In 
reference [43], the authors constructed a dataset for Arabic by 
gathering data from popular social media networks. They 
utilized this dataset for hate speech detection purposes. They 
have performed data filtering to clean the dataset. Dataset was 
annotated. Then the dataset was trained and tested with ML and 
DL models. Complement NB surpassed other ML models for 
accuracy, F1 score, recall and precision. RNN outperformed 
CNN in DL models. Regarding the previous datasets on Arabic, 
the dataset collected in this research has given higher accuracy. 
Further in [44], authors have developed an Arabic dataset for 
topic classification, sentiment analysis, and multi-label 
classification of on-line social media networks (OSNs). 
Removing tokens beyond a specific length, removing stop 
words and stemming were performed as preprocessing steps. 
BoW, n-gram, TF-IDF were used as feature extraction 
methods. Shallow ML algorithms were used. Authors have 
incorporated grid search to select the best set of hyper 
parameters. Chi-square feature selection and hyper parameter 
tuning has improved the results. n-gram (1,2) with linear 
support vector classification (LinearSVC) has obtained higher 
results in topic classification. LR with BoW has yielded higher 
results on sentiment classification while TF-IDF with 
LinearSVC showed higher results for multi-label classifiers. 
Authors have also found a relationship between hate speech 
and OSNs post topics. Their proposed mechanism yielded 
83.7% accuracy in filtering Facebook posts. 
 
In another study related to Arabic, proposed a new mechanism 
to detect contradictions in Arabic sentences, a special scenario 
of natural language inference (NLI) [29]. Authors have created 
a dataset consisting of more than 6,000 sentence pairs of Arabic 
language. Their dataset consists of three different classes: 
contradiction, entailment and neutral. They augmented the 
dataset by automatic translation using two existing datasets. 
Feature extraction models used were word embedding 
mechanisms and language level feature extraction methods. 
SVM, stochastic gradient descent (SGD), DT, adaptive 
boosting (AdaBoost), k-nearest neighbour (KNN) and RF were 
used as classification methods. They have evaluated the results 
on their original dataset and two translated datasets. Obtained 
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results convince higher accuracy for RF classification that 
employs BoW vector with contradiction vector. 
 
Regarding Bengali language, research was conducted to 
evaluate the performance of multi-class sentiment 
classification on Bengali text [25]. Authors proposed a system 
that employs CNN and LSTM architectures. They have built a 
Bengali text dataset of size 42,036 social media comments that 
has four different classes. Authors have selected MNB, LR, 
DT, RF, SGD, and SVC along with their word embedding 
mechanisms like TF-IDF and count vectorizer (CV). LSTM, 
Bi-LSTM, Bi-GRU and a model that employs both CNN and 
LSTM (C-LSTM) were used along with word embedding as 
DL architectures. C-LSTM has outperformed other baseline 
methods. 
 
We have summarized the related work in the context of hate 
speech detection mainly with the involvement of shallow and 
complex machine learning techniques. For convenience, we 
categorize our findings language wise. The findings opened the 
avenues and pointed out the importance of conducting more 
research on low level languages such as Sinhala, which was 
tried to achieve in the current research. 
 
III. MATERIALS AND METHODS 

Here, we present a detailed description of how our research has 
been conducted. As the first step of the study, we have 
composed a dataset that includes Sinhala violent and 
nonviolent images mainly collected from Facebook. We have 
employed two approaches to classify the dataset into two 
categories, nonviolent and violent. The first approach is 
clustering where images are fed to unsupervised algorithms. 
The second approach is to utilize manually extracted textual 
parts of the images to train supervised learning algorithms. To 
train supervised ML algorithms, the dataset was annotated as 
nonviolent and violent. To evaluate the results, we employed 
four metrics commonly used in ML studies: accuracy, 
precision, recall, and F1-score. One drawback on ML 
algorithms is that they are like black boxes, and we do not know 
why a ML model predicts a text as violent or nonviolent, which 
words in the text caused the decision. To find out which words 
caused the decision, in this research, we further employed 
explainable AI (XAI) methods such as local interpretable 
model-agnostic explanations such as (LIME) [50] and Shapley 
additive explanations (SHAP) [33] and integrated gradient (IG) 
[61]. The overall process of supervised learning is depicted in 
Figure 1. 
 
A. Dataset collection 

All images were manually downloaded from Facebook. We 
found Facebook groups and their pages that are specialized for 
different topics that are related to our study. We used such 
pages to download images and we have also used keyword 
search to download violent posts. We identified commonly 
used violent words and treated them as keywords. The final 
dataset consists of 3,463 nonviolent and 3,465 violent images. 
Figure 2 and Figure 3 depict a nonviolent image and a violent 
image respectively. 
 
 

 

Figure 1. Supervised learning training process 

 

 
Figure 2. Image nonviolent  Figure 3. Image violent  
             content                                               content 

As the study was conducted mainly based on two types of ML 
algorithms, two types of data preparation were needed. For the 
unsupervised algorithms, mainly more nonviolent data were 
collected. For that basically a subset from [20] is used. 2,463 
nonviolent image posts were used to train the unsupervised 
algorithms. 
 
For the supervised algorithms, a different data handling process 
is employed. For that, a dataset was constructed by combining 
the data collected from previous research [20] with additional 
violent image posts. Textual portions of the images were 
extracted manually to perform the text classification. Unicode 
characters were utilized during extracting the text parts since 
Unicode characters provide device and platform-independent 
characters. For the supervised algorithms, data collection was 
followed by Data Annotation, Data Augmentation, Data 
cleaning, and Data Preprocessing. 
 
1) Data/Images Annotation: 

Two volunteer annotators annotated the dataset. The annotation 
process used the guidelines described in previous research [20]. 
If either the textual or visual component exhibited violence, the 
post was labelled as violent. A post can be identified as violent 
if it contains content that abuses a religion, race, or other 
beliefs; targets individuals or groups causing emotional harm 
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or displays sexism. The posts that contain sarcasm were 
regarded as violent as it can inflict emotional distress on 
individuals or groups. Cohen’s kappa was calculated to 
evaluate the agreement between two annotators, and scikit-
learn library was used for the Cohen’s kappa calculation [12]. 
The calculated Cohen’s kappa value for the dataset was 0.9. 
 
2) Data/ (Images, Text) Augmentation: 

To enhance the accuracy of deep learning models, a larger 
dataset is expected. In the realm of ML, expanding a dataset 
using the existing samples is referred to as data augmentation 
[22, 58]. In the context of unsupervised learning our inputs 
were entire images. Therefore, we performed data 
augmentation techniques for the images such as random 
rotation, colour jittering and random horizontal flipping to 
generate additional variations of the existing images. We used 
random rotation to rotate images by a random angle, colour 
jittering to change the brightness, contrast, saturation, and hue 
of images randomly and horizontal flipping flip images 
horizontally for a given probability. When applying 
augmentation to our dataset, we followed a novel technique: we 
individually applied the three augmentation techniques to our 
training dataset, then concatenated the resulting datasets with 
the original dataset and achieved 9,852 as the size of the final 
training dataset. 
 
For the textual components, a technique called back translation 
was employed to expand the dataset. 1,000 violent and 1,000 
nonviolent texts were randomly selected for back translation. 
The initially selected text was translated into English and was 
subsequently translated back into Sinhala. Augmented data was 
re-evaluated to compare the original text with augmented text. 
Text that was augmented with a wrong meaning was manually 
corrected. Python translation was used in the translation 
process and the resulting text was written to a Microsoft Excel 
sheet. The augmented text and the text used to create 
augmented text were included only in the training dataset and 
for the testing, separate set of text were used. Following the 
augmentation, we achieved 8,907 as the size of our final 
dataset. 
 

3) Data/Text Cleaning: 

Text cleaning process in this study consists of several steps 
including removing Pali text, adding white spaces, removing 
names, and modifying characters. Pali text is a Middle Indo-
Aryan language mainly used in Theravada-Buddhism. 
Buddhist monks in Sri Lanka use this language to chant 
prayers. Pali text included in most Buddhist posts was removed 
from the dataset. Usually, punctuations follow a white space in 
professional writing; however, the standard rules are not 
followed in most amateur posts. The tokenization process 
returns a different output when white spaces are not included 
in the correct places. Therefore, regular expressions were used 
to make sentences accurate.  
 
In Sinhala alphabet, න, ණ, ල, and ළ are consonants. න and ණ, 
as well as ල and ළ have the same sound. Although the letters 
have the same sound, they cannot be used interchangeably. 

However, people who speak the language use these letters 
interchangeably due to a lack of knowledge of using them. It is 
difficult to memorize the places where these letters are used. 
Hence, these two letters are misused in Sinhala writing and in 
image posts. That is, න is used in cases where the letter ණ is 
expected, and vice versa. Similarly, ල is used in cases where 
the letter ළ is expected and vice versa. Therefore, all the text, 
including ළ, was modified to ල, and all the text, including ණ, 
was modified to න. 
 
4) Data/Text Pre-processing: 

Data/Text pre-processing is followed by a series of steps such 
as tokenization, removal of numbers and punctuations, stop 
words and stem words, text transliteration and dataset splitting. 
 
The first step of text pre-processing is to split the text from 
white spaces. The split texts are called tokens. The research was 
conducted with “word_tokenize” in the natural language toolkit 
(NLTK) and “SinhalaTokenizer” from “sinling” [56]. 
  
Numbers and punctuation were removed from the dataset. Stop 
words and stem words prominently used in the Sinhala 
language were filtered out. Stop words such as ඒ, ෙ�, න�, ඇ�, 
එක, කර, හා, නෑ, වන,  , ද, බව, ගැන, කර%, අතර, යන, ෙලස, 
*සා are used. English meaning of these words respectively is 
“That, this, if, one, done, and, no, is, was, the, that, about, does, 
between, going, as, because”. Stem words such as මම, මට, 
මටම, මට-, මෙ., මෙ.ම, මාෙ., මාෙග, මාව, මාවම, අ/, අ/ම, 
අ/වම, අපට, අපටම, අපව, අපවම, අෙ1, අෙ1ම are filtered out. 
“I, me, myself, mine, my own, we, ourselves, our” are the 
English translations of stem words. 
 
Python Unidecode function was employed to obtain the 
transliterated text as a preprocessing step to check any 
improvement in the performance [74]. Unicode characters are 
fed into the Unidecode function and converted to ASCII 
characters.  
 
The training process commences by initially partitioning the 
dataset into training and testing sets with a 4:1 ratio using the 
scikit-learn command to split the data [46]. Subsequently, we 
selected the models with higher results for further testing. In 
the subsequent step, the dataset was partitioned into training, 
validation, and testing subsets with 8:1:1 ratio. The selected 
models underwent further evaluation with the updated dataset 
partitioning. The PyTorch data loaders were created for 
training, validation, and testing datasets. For the unsupervised 
training process, the training set consists only of nonviolent 
images. A subset of nonviolent images from our new dataset 
was selected as the training dataset. As for the validation and 
testing datasets, 500 images from each category were selected. 
 
B. Hardware, software, libraries, and technologies used. 

PyTorch was used as the ML library and Jupyter Notebook as 
the platform. Experiments were conducted on an Nvidia RTX 
– 3090 64 GB server. 
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C. Evaluation metrics used in the research 

 

Evaluation metrics used are accuracy, precision, recall, and 
area under the ROC curve (roc_auc_score) [28]. The confusion 
matrix is also used. 
 
D. Unsupervised Learning 

 

The dataset was used as it is to be fed into the unsupervised 
learning algorithms. There are many algorithms under 
unsupervised category. We have focused our study on 
autoencoders. Autoencoder is an unsupervised learning 
algorithm. The autoencoder architecture contains an encoder 
and a decoder. When an image is fed to the encoder, the 
decoder will attempt to regenerate the image. The loss function 
of autoencoders is defined as the difference between the 
original and the regenerated image (reconstruction loss). 
Autoencoders are trained using a specific type (nonviolent) of 
data, allowing them to learn patterns inherent within that 
dataset. Trained autoencoder can regenerate the type of data it 
has trained. If the type of data, we used in training is nonviolent 
then the autoencoder will give a lower reconstruction loss for 
nonviolent data in testing dataset, meaning that it recognized 
the nonviolent images properly. The autoencoder is not trained 
for violent images and unable to identify the pattern in violent 
images; therefore, a higher reconstruction loss is expected. 
Here, the autoencoder acted as an anomaly detection method 
where violent images act as the anomalies. 

  
After training an autoencoder, we fed the validation dataset 
with both violent and nonviolent images to the trained 
autoencoder, obtaining the reconstruction loss of the images in 
the validation set. The reconstruction loss was acquired as a 
vector. Subsequently, we utilized an SVM to classify the 
reconstruction loss. Finally, the testing images were passed 
through the trained autoencoder to obtain their reconstruction 
loss as a vector. This vector was then fed into the trained SVM 
to evaluate the performance.  

A previous study has found that an autoencoder utilizing 
GoogleNet transfer learning and convolutional layers give 
better results for violent and nonviolent image recognition than 
other autoencoders [20]. We have utilized the same 
autoencoders proposed in [20] to evaluate the results on our 
new dataset. 

E. Supervised learning - Shallow learning 

Before employing supervised learning-shallow learning on pre-
processed data, the feature extraction step needs to be 
completed. For the feature extraction, feature engineering 
techniques were used. 
 
1) Feature engineering: 

The text must be represented in a numerical format to feed text 
to natural language processing (NLP) and ML algorithms; this 
is known as feature engineering. The text can be represented 
with a vector of numbers known as a vector space model. 
Popular vector space models are BoW, TF-IDF, and one-hot 
vector encoding. These models aim to obtain similar 

representations for similar tokens of text. All three methods 
have sparsity problems that are inefficient to handle in the 
computer memory and out-of-vocabulary problems. 
First, the vocabulary that contains all tokens in the corpus was 
created. The vector size is |V| as V is the number of unique 
tokens in the corpus. In one-hot encoding each token is 
represented by a vector of length |V|, and a sentence is a 
combination of all vectors of the tokens in the sentence. As 
different sentences in the corpus have different lengths, vector 
size varies with each other. One-hot encoding ignores the 
similarity between words [66]. 
 
The order of words and context are not considered in BoW 
representation, and it considers a sentence or a document as a 
bag of words. Vocabulary is developed as in the one-hot 
representation, and the number of occurrences of each word in 
the sentence can be stored in the vector representation. BoW 
does not represent each word as a vector; it represents the whole 
document as a vector without considering the order of words. 
This representation has a fixed length for all documents in the 
corpus. Documents with similar words can be identified using 
BoW, though different words with similar meanings cannot be 
identified. Bag-of-n-grams can help obtain a semantic meaning 
between words [66]. “Countvectorizer” function in scikit-learn 
was used to implement the BoW method. TF-IDF is another 
text representation method with two terms: TF explains the 
importance of a word within a document, and IDF explains the 
importance of the same word concerning other documents in 
the corpus [66]. “TfidfVectorizer” in scikit-learn was used to 
implement TF-IDF. 
 
2) Classification Algorithms: 

Encoded data were fed into ML algorithms such as SVM, LR, 
NB, and RF. SVM computes the optimal hyperplane by 
maximizing the margin between support vectors and LR 
computes a line according to a sigmoid function [14, 38]. For 
LR, Gradient descent or maximum likelihood can act as the 
optimization algorithm [32, 51]. NB is based on the Bayes 
theorem that assumes all features are independent (of each 
other). NB is a generative algorithm where the posterior 
probability is calculated with a model that implements a joint 
distribution of X and Y. Equation 1 can be derived for the 
Bayes classifier; it can be categorized as Gaussian or 
multinomial, depending on the different distributions of 
P(�� �⁄ ) [66]. 
 
P(� �⁄ � , … , �	) α P
y�∏ P
�� �⁄ �	���   ------------ Equation 1 
 
RF is a method that uses many uncorrelated decision trees to 
make predictions. More accurate predictions are received when 
each decision tree is independent of one another. RF 
implements bootstrap aggregation (bagging) that results in a 
crucial difference in the output by inputting a training set with 
minor changes [9]. The scikit-learn library was used for 
implementing shallow learning algorithms. 
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3) Sampling methods used in shallow algorithms 

Although the data is divided into train and test, parameters in 
algorithms can be tweaked to give better results for the test set. 
A validation set was derived again from the train set to prevent 
the situation. Having three sets as train, validation, and test 
minimizes the data that can train the model. Cross validation, 
stratified sampling (an extension of cross validation), and re-
sampling (a bootstrapping procedure) were used to solve the 
problem. The training set is divided into K folds. K-1 folds 
were used to train the model and the remaining Kth fold was 
used to validate the model in cross-validation. The scikit-
learn’s “StratifiedKFold” was used in stratified sampling. 
Stratified sampling is an extension of cross-validation that uses 
stratified folds. Re-sampling that uses a bootstrapping method 
selects a sample with a pre-defined sample size. The model was 
trained on the selected sample and the model was tested on the 
data, which is not selected for the sample. The process can be 
repeated many times, and mean estimates can be obtained by 
averaging the values over the number of samples. 
 
F. Supervised learning - Deep learning 

1) Text padding and vocabulary creation: 

The training set was tokenized into words, and a vocabulary 
was created for the training set. In the vocabulary, a unique ID 
was assigned to each word. The maximum length of sentences 
was selected depending on the number of tokens. Sentences 
were padded depending on the difference between sentence 
length and maximum length. The same vocabulary was used 
for the test set and assigned with IDs. Unknown tokens were 
assigned for words that were not in the vocabulary. 
 
2) Feature engineering: 

Pre-trained word embeddings were loaded after the vocabulary 
creation and text padding. A matrix was implemented with 
vocabulary size (as the row dimension) and embedding size (as 
the column dimension). Subsequently, distributed 
representations of text known as word2vec [40] and fastText 
[8] were used as the embedding mechanisms for deep learning 
algorithms. A Sinhala dataset created in previous research was 
also used to create new embeddings in conjunction with a 
random subset of the dataset collected in our research [48, 57]. 
However, the embedding models created using our dataset did 
not perform well. Text that was converted using the Unidecode 
library in Python and text without the conversion was also 
applied to generate word2vec and fastText models. However, 
by comparing the obtained accuracies, finally, pre-trained 
embeddings obtained from previous research were used [16, 
57]. 
 
3) Classification Algorithms: 

1D CNN [64], LSTM [27], GRU [11], bidirectional LSTM 
(BiLSTM) [24], and bidirectional GRU (BiGRU) [6] were 
utilized as deep learning algorithms. Ensemble methods, 1D 
CNN with LSTM, 1D CNN with GRU, 1D CNN with 
BiLSTM, and 1D CNN with BiGRU were also tested to 
evaluate the performance. Filter size, number of filters, number 
of layers, optimization algorithms, and number of epochs were 
modified to find the optimum result in 1D CNN. The size of the 

hidden layer, number of layers, and number of epochs were 
modified in the LSTM and GRU to find an optimum result. The 
learning rate was reduced to prevent overfitting. The output of 
1D CNN layers with different filter sizes as 2, 3, 4, 5, 7, and 11 
were concatenated. Figure 4 shows the architecture of 1D 
CNN. The output was sent through a fully connected layer to 
obtain the final output. 
 
In Ensemble architectures, output obtained in 1D CNN was fed 
through recurrent models such as LSTM and GRU. The 
ensemble model, which combines 1D CNN and GRU, is 
depicted in Figure 5. Text with an embedding dimension 300 is 
fed to the model. Three 1D CNN filters are used to extract the 
features, followed by a max pooling layer. The outputs 
obtained from the three filters are concatenated. The 
concatenated output is reshaped and sent through a GRU layer. 
The output obtained from GRU is fed to a fully connected layer, 
resulting in the classification output. 

 

 
Figure 4. 1D CNN architecture 

 

 
Figure 5. CNN GRU architecture 
 

The cross-lingual representation of robustly optimized BERT 
pre-training approach (RoBERTa) (XLM-R) XLM-R was used 
as the BERT architecture, which is trained for 100 different 
languages and Sinhala is also included in these 100 languages 
[17]. Cross-lingual language model (XLM) was introduced to 
support 100 languages [13]. XLM uses Byte-Pair Encoding 
(BPE) to gain the sharing capability. In BPE, frequently used 
sub-word pairs are merged so they can easily represent an 
unknown word with sub-words that are already in the 
vocabulary. XLM-R, which works similarly to XLM, was 
trained according to the RoBERTa; RoBERTa uses a masked 
language model (MLM). The model was trained for the training 
set using “AdamW” optimization function and tested with a test 
set. The Hugging Face library which was implemented using 
PyTorch helped to access BERT interfaces [71]. The dataset in 
XLM-R was loaded and tokenized using a sentence piece 
tokenizer. All BERT algorithms expect sentences in the corpus 
to be tokenized in a distinct format. XLM-R requires similar 
formatting. The three special tokens used in BERT architecture 
are [CLS] as the classifier, [SEP] as the separator, and [PAD] 
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as the padding. In XLM-R, the main tokens are <s> to indicate 
the beginning of a sequence, <\s> to indicate the separation of 
sequences and the end of a sequence, and <pad> as the padding. 
The method “encode_plus” returns the padded token list and 
attention mask. Attention mask indicates the separation 
between real tokens and padded tokens. 
“XLMRobertaTokenizer” was used as the tokenizer, and the 
“XLMRobertaForSequenceClassification” model was defined 
as the model for XLM-R [71]. 
 
With these deep learning techniques, early stopping was used 
as a promising technique to avoid overfitting and to find the 
most suitable model [47, 62]. 
 
G. Explainable AIs 

Most ML models are black boxes; hence inner workings are not 
visible. Therefore, LIME and SHAP were used to describe the 
decisions taken by the black boxes [50, 33]. Using graphical 
pictures and details provided by the explainable APIs, texts that 
influenced the decision of the ML algorithms can be identified. 
‘LIME’ model is a local approximation of the ML model. An 
instance in the dataset was selected, and the sample size in the 
LIME was initialized. The default sample size is 5,000, and 
better results can be obtained as the sample size increases. 
According to the sample size, the instance was perturbed by 
removing some of the tokens in the instance to create a sample. 
The sample obtained by perturbation was inputted to a custom 
prediction function that uses the trained ML model to calculate 
the prediction probability of each perturbation. The weights of 
the perturbed instances are calculated depending on the 
proximity to the original instance. LIME outputs the weights of 
each feature which helps to get a view of which features caused 
the decision given by the ML model. SHAP is based on game 
theory, and all features act as players in the game. SHAP 
calculates the average marginal contribution of a feature 
regarding all possible coalitions. Other than LIME and SHAP, 
IG is also used to describe deep learning models [61]. IG 
calculates the gradients of the output to its features. Initially, an 
instance was selected. The instance is interpolated starting from 
a baseline model. Then the gradient is calculated to check the 
changes in the features to the model prediction. 
 
IV. RESULTS AND DISCUSSION 

Here we present the obtained results for different ML 
algorithms we used, to identify hate speech related images. 
First, we will present the results of unsupervised learning 
algorithms, then shallow supervised learning algorithms and 
finally the results of deep learning algorithms. 
 
A. Results of unsupervised learning algorithms 

Table 1 presents the results for the autoencoders using the 
dataset mentioned in Section III A. Autoencoder with 
convolutional layers have shown better results than other 
autoencoders. 
 
 

Table 1. Results for autoencoders 
Model Accuracy Precision Recall F1 Score 

GoogLeNet 0.657 0.6599 0.657 0.6555 

Convolutional 0.727 0.7304 0.727 0.726 

B. Results of supervised learning algorithms 

Here, first we present the results of shallow ML algorithms, 
classifying the images using the text in the images. Results of 
shallow and deep ML algorithms were obtained using two main 
methods: using popular performance metrics and using 
explainable AI methods. 
 
1) Results of shallow ML algorithms using performance 

metrics: 

Using popular performance metrics for NB and LR algorithms, 
accuracy of the results was low, for one hot encoding feature 
extraction method, compared to other methods such as BoW 
and TF-IDF (see Table 2). 
 

Table 2. Accuracy of one-hot encoding for NB and LR 
 Classification Method 

 NB  LR 

Accuracy  0.685  0.69 

 

Initially, computations were performed on a dataset comprising 
1,000 violent and 1,000 nonviolent images. Subsequently, the 
dataset size was expanded, and augmentation techniques were 
applied to further increase its size. Table 3 provides the results 
of different performance metrics for TF-IDF embedding for 
shallow algorithms; MNB, LR, SVM and RF before expanding 
the dataset in Unidecode format. Table 4 presents results after 
expanding the dataset but without augmentation and Unidecode 
format. Table 5 depicts the results of different performance 
metrics for the augmented and in Unidecode format. Table 6 
describes the results of the BoW embedding with Unidecode 
and augmented data, and Table 7 describes the results for 
Unidecode and increased dataset but before the augmentation. 
According to these tables, NB classification has obtained 
higher results than other classification algorithms, RF showed 
lower results, and TF-IDF and BoW have obtained comparable 
results. The conversion of text to Unidecode format and 
expansion of the dataset has led to a noticeable improvement in 
the results. 91% accuracy was obtained for TF-IDF, BoW with 
NB classifier. The results of the BoW were slightly higher than 
TF-IDF. 
 

Table 3.  TF-IDF results before increasing the dataset but with 
Unidecode data 

Metrics Classification Methods 

MNB  LR  SVM  RF 

Accuracy  0.8725  0.875  0.875  0.6575 

roc_auc_score  0.9578  0.9477  0.9464  0.7433 
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F1  0.8771  0.8775  0.878  0.5387 

Precision  0.8505  0.8647  0.8612  0.8333 

Recall  0.9055  0.8905  0.8955  0.398 

 
Table 4. TF-IDF results after increasing the dataset but without 

Unidecode and augmented data 
Metrics  MNB  LR  SVC  RF 

Accuracy  0.829  0.8261  0.8217  0.7878 

Precision  0.7851  0.8318  0.8125  0.7956 

F1  0.8332  0.8159  0.8155  0.7735 

Recall  0.8876  0.8006  0.8186  0.7526 

ROC_AOC_Score  0.9238  0.9055  0.9074  0.8696 

 

 
Table 5. TF-IDF results for the augmented and Unidecode dataset 

Metrics  MNB  LR  SVC  RF 

Accuracy  0.9074  0.8953  0.8961  0.813 

Precision  0.8784  0.899  0.8925  0.8414 

F1  0.9075  0.8908  0.8925  0.7962 

     

Recall  0.9385  0.8827  0.8925  0.7556 

ROC_AOC_Score  0.9721  0.9628  0.9601  0.8967 

 

Further we have used NB as the classification algorithm with 
different sampling techniques and obtained the performance 
metrics (see Table 8). MNB with the BoW method has obtained 
better results for all the metrics in cross-validation (k-fold and 
stratified). However, employing cross-validation did not 
improve the previous result. Results depict that k-fold and 
stratified sampling have higher results than resampling. 
 
2) Results of shallow ML algorithms using explainable 

methods: 

We have used two text examples to describe the results 
obtained for XAI methods in shallow learning. Preprocessed 
and Unidecode text of Sentences 1 and 2 are shown in Table 9. 
Figure 6 and Figure 7 depict the LIME and SHAP outputs of 
sentence 1. 
 

Table 6. BoW results for the augmented and Unidecode dataset 
Metrics Classification Methods 

MNB  LR  SVM  RF 

Accuracy  0.9163  0.8875  0.8534  0.815 

roc_auc_score  0.9735  0.9536  0.9323  0.8927 

F1  0.915  0.881  0.8462  0.7991 

Precision  0.8914  0.9106  0.8634  0.8515 

Recall  0.9399  0.8534  0.8296  0.7528 

 
 
 

 
 
 

Table 7. BoW results for the Unidecode dataset but without the 
augmentation 

Metrics Classification Methods 

MNB  LR  SVM  RF 

Accuracy  0.9047  0.8732  0.8532  0.8381 

F1  0.9026  0.8655  0.8453  0.8236 

Precision  0.8825  0.8931  0.8639  0.8805 

Recall  0.9235  0.8396  0.8276  0.7736 

 
Table 8. Results of MNB classification for sampling methods with 

Unidecode and augmented data 

Embeddi

ng 

Sampling  Accuracy  F1  Precision  Recall 

BoW  k-fold  0.91  0.911  0.884  0.940 

TF-IDF  k-fold  0.91  0.893  0.867  0.921 

BoW  Stratified  0.91  0.903  0.85  0.956 

TF-IDF  Stratified  0.91  0.913  0.889  0.939 

BoW  Resampling  0.862 0.867  0.846 0.889 

TF-IDF  Resampling  0.862  0.865  0.860  0.871 

 

 

Figure 6. LIME results for sentence 1 - Shallow learning 

 
 

Figure 7. SHAP results for sentence 1 - Shallow learning. 
 
LIME output with BoW as the embedding and NB as the 
classification algorithm has found Sinhala words ඝාතන 

(killings), සහාය (supported), අ7ලාහ්ට (Allah), 9ස්තෙය: 

(terrorists), and සාමෙ; (peace) caused to conclude that 
sentence 1 as violent. Sentence 2 can be identified as 
nonviolent. Violent words are highlighted (orange) in the text. 
Although Sinhala words සහාය (supported) and සාමෙ; (peace) 
are nonviolent words, they were identified as violent. Orange 
colour indicates violent words, and others are nonviolent 
words. 
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3) Results of deep learning algorithms using performance 

metrics: 

Table 10 presents the Sinhala text classification results using 
deep learning algorithms. The results were analysed with and 
without data augmentation. The presented outcomes are the 
best possible outputs obtained under different conditions: 
learning rate and number of epochs. Superior results were 
obtained for 1D CNN with a learning rate of 0.002. The 
learning rate was chosen as 0.000001 for other algorithms like 
LSTM and GRU. The GRU with CNN ensemble models (250 
epochs) converge to a solution within fewer numbers of epochs 
than the CNN models (450 epochs).  
XLM-R was evaluated for 500, 700 and 1,000 epochs with a 
learning rate of 0.000001, obtaining 93% accuracy, which is 
better than that of other models. XLM-R achieved over 90% 
for precision, recall, and F1-score, also outperforming other 

models. Subsequently, the GRU and CNN ensemble model, 
incorporating word2vec achieved 91% accuracy. Similarly, 
CNN with BiGRU utilizing word2vec, 1D CNN with word2vec 
and 1D CNN with fastText achieved 90% accuracy. In the 
context of 1D CNN, fastText with 300 embedding dimensions 
showed better results than word2vec embedding. Figure 8 
illustrates the confusion matrix of XLM-R.  
 
Figures 9 and 10 depict the loss and accuracy curves of nine 
deep learning models, respectively. CNN with GRU and CNN 
with BiGRU that incorporate word2vec, exhibit lower loss than 
LSTM and CNN models. Furthermore, CNN with GRU, 
incorporating word2vec, exhibit higher accuracy compared to 
other models.  
 
 

 
Table 9. Sinhala text examples 

Sentence 

No.  

Text  English Translation Preprocessed  

Text 

Unidecode Text 

Sentence 
1  

ෙ� ඝාතන  
වලට සහාය <=  
අ7ලාහ්ට ස්>�% ! 
අ% එස් 9ස්තෙය:  
?ය%. සාමෙ;  
ආගම ෙමය ද? 

Thanks to Allah, who 
supported these killings! IS 
terrorists say. Is this the 
religion of peace? 

ඝාතන (killing)  
සහාය (support)  
අ7ලාහ්ට (Allah)  
ස්>�% (thanks)  
එස් (IS) 9ස්තෙය:  (terrorists) සාමෙ; (peace) 

ghaatn shaay allaahtt stutiyi es 
trstyoo saamyeet 

Sentence 
2  

ෙඔB ෙගල වටා  
පැළCය හැ?  
ෙහාඳම ආභරණය  
ව=ෙ= ඔෙB  
දFව=ෙ. දෑත% 

The best jewelry you can wear 
around  
your neck is your children’s 
arms 

ෙගල (neck)  
වටා (around)  
පැළCය (wear)  
ෙහාඳම (best)  
ආභරණය (jewelry) දFව=ෙ. (children’s) දෑත% 
(arms) 

gel vttaa paellndiy hondm 
aabhrnny druvngee daaetyi 

Sentence 
3  

ෙබෟHධ%=ට තJ  
ෙනාබා ෙද/ල  
ෙබK මරාග=නා  
අ=තවාK Lස්M�  
ක7M මJN.  
9ස්තවාදයට  
*දහෙස්  
වැෙඩ=නට ඉඩK  
බලා QR=ෙ=  
ෙ� රට තව-  
ඉරාකයS  
ෙවන>Fද?  
ෙබෟHධ  
අ=තවාදයS ගැන 
ෙබාF ෙBග7 ඇද 
ෙනාබා Lස්M�  
අ=තවාදය ගැන  
ඇ-ත /Tග=න. 

Instead of punishing 
Buddhists, stop  
extremist Muslim gangs 
who  
divide and kill. Are they 
allowing terrorism  
to grow freely  
and waiting for this country 
to become another Iraq? 
Accept  
the truth about Muslim 
extremism without  
pulling false  
stories about  
Buddhist extremism. 

ෙබෟHධ%=ට  
(Buddhists) තJ  
(punish) ෙනාබා  
(not) ෙද/ල  
(two groups)  
ෙබK (divide)  
මරාග=නා  
(killing) අ=තවාK (extremist)  
Lස්M� (muslim)  
ක7M (gang)  
මJN (stop).  
9ස්තවාදයට  
(terrorism)  
*දහෙස් (freely)  
වැෙඩ=නට  
(grow) ඉඩK  
(let) QR=ෙ=  
(waiting)  
ඉරාකයS (Iraq)  
ෙවන>Fද (until)  
ෙබාF (false)  
ෙBග7 (stories)  
ඇද ෙනාබා  
(without telling)  
Lස්M� (muslim)  
අ=තවාදය(extremism) ඇ-ත (truth) /Tග=න (accept)

bauddhyintt tddi nobaa depil 
bedii mraagnnaa antvaadii 
muslim klli mddinu. 
trstvaadytt nidhsee vaeddenntt 
idddii blaa sittinnee mee rtt tvt 
iraakyk venturud? bauddh 
antvaadyk gaen boru beegl aed 
nobaa muslim antvaady gaen aett 
pillignn. 
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Table 10. Results of deep learning algorithms in text classification 

Method  Augmentation1  Accuracy  Precision  F1  Recall 

CNN+word2vec 300 2  No  0.9033  0.8791  0.9022  0.9265 

CNN+BiGRU+word2vec 300  No  0.8788  0.8855  0.8776  0.8763 

CNN+BiGRU+word2vec 300  Yes  0.9041  0.9055  0.9038  0.9032 

CNN+GRU+word2vec 300  No  0.8925  0.8926  0.8923  0.8921 

BiGRU+word2vec 300  No  0.8911  0.8909  0.8911  0.8914 

BiLSTM+word2vec 300  No  0.8853  0.8852  0.8851  0.885 

CNN+BiLSTM+word2vec 
300  

No  0.8889  0.8892  0.8889  0.8897 

GRU+word2vec 300  No  0.8939  0.8941  0.8937  0.8935 

LSTM+word2vec 300  No  0.8853  0.8874  0.8847  0.8839 

CNN+LSTM+word2vec 
300  

No  0.8918  0.8918  0.8916  0.8914 

CNN+word2vec 300  Yes  0.9001  0.8586  0.9019  0.9497 

CNN+GRU+word2vec 300  Yes  0.9136  0.9137  0.9134  0.9132 

BiGRU+word2vec 300  Yes  0.8987  0.8986  0.8987  0.8989 

GRU+word2vec 300  Yes  0.898  0.8988  0.8978  0.8973 

CNN+fastText 300  Yes  0.9048  0.9044  0.9012  0.898 

BiGRU+fastText 300  Yes  0.8872  0.8871  0.8871  0.8872 

CNN+GRU+fastText 300  Yes  0.8899  0.8898  0.8898  0.8899 

GRU+fastText 300  No  0.8687  0.8691  0.8683  0.868 

CNN+fastText 300  No  0.8788  0.8833  0.8725  0.8621 

BiGRU+fastText 300  No  0.8687  0.8685  0.8685  0.8684 

CNN+GRU+fastText 300  No  0.8874  0.8873  0.8873  0.8872 

CNN+fastText 450  Yes  0.898  0.9088  0.8927  0.8771 

CNN+GRU+fastText 450 3  Yes  0.896  0.8965  0.8958  0.8955 

XLM-R  Yes  0.9203  0.9118  0.9182  0.9245 

XLM-R  No  0.93  0.9371  0.9265  0.916 

1 Augmentation: Yes - Refers to the dataset containing augmented data. No - Refers to the dataset without any augmentation.  
2 CNN stands for 1D CNN. 300 represents the embedding dimension. The “+” sign signifies the fusion of the “CNN” algorithm and the 
“word2vec” embedding mechanism with 300 embedding dimensions.  
3 450 represents the embedding dimension.  

 
 

 

 

 

 

 

Figure 8. Confusion matrix of 

XLM-R 
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Figure 9. The loss of the model incurred on the test data. 

 

 

 

 

 

 

 

 
 

 

Figure 10. The accuracy achieved on the test data.  

 
Table 11 presents the performance results of 1D CNN, CNN, 
and GRU ensemble model, as well as the XLM-R models after 
partitioning the dataset into train, validation, and test subsets. 
The results depict that the XLM-R model achieved superior 
results compared to the 1D CNN and GRU ensemble model. 

Table 11. Performance results on different dataset splits 

 Accuracy  Precision  Recall  F1-score 

fastText + 1D CNN  0.8862  0.9024  0.8626  0.8821 

word2vec + CNN + GRU  0.8977  0.8992  0.8973  0.8975 

XLM-R  0.93  0.94  0.91  0.92 

 
3) Results of deep learning algorithms using explainable 

methods: 

Sentences 1, 2, and 3, as depicted in Table 10, are utilized in 
the context of deep learning. Sentences 1 and 3 are identified 
as violent, whereas Sentence 2 is identified as nonviolent. 
Violent words identified by LIME using CNN, and GRU 
ensemble are හ�බෙයා (similar word for Muslims), අ-අඩංVවට 

(arrested), මරනයට (to death), නW=සකෙය: (eu nuchs), ෙහාර 

(fake), උHෙඝ:ෂණයS (campaign), පගාව (revenge), Zනාශ 

(destruction), \] ජාවාරෙ� (drug dealing), Lස්M� (Muslim), 
9ස්ත (terror), _ෂනය (corruption), ඉස්ලාමෙ; (Islam), 
අ=තවාදය (extremism), ෙBබ< (drunkenness), බැනල (scolded), 
ෙහාF (thieves), අවජාතක (bastards), වංචාව (fraud), /M\ෙල= 

(disgusted), බa (dogs), b�ය (law), Lස7මාNව=ට (similar 
word for Muslims), හලා7 (Halal), \]කාරෙය: (drug addicted), 
addicted), අ=තවාK= (extremists), ෙහාරකං (thieves), and 
මාcd (caught). The identified nonviolent words are, ආදෙර= 

(with love), ඉවeම (patience), fෙ- (heart), බැgම?= (bond), 
Qනහවට (smile), කha (tears), පැලCය (dress), ෙහාඳම (best), 
දFව=ෙ. (children’s), ෙගල (neck), ස>R= (happy), 

ෙදමා/ය= (parents), and මානQක (mental). Although some 
nonviolent words were identified as violent in Sentence 1 and 
Sentence 2 by shallow machine learning, in deep learning they 
were identified correctly. Figure 11 and Figure 12 show the 
LIME output of Sentence 1 and Sentence 2 respectively. 

 
Figure 11. LIME results for sentence 1 using deep learning. 

 

Figure 12. LIME results for sentence 2 using deep learning. 

 
SHAP has produced slightly different results than LIME. 
Figure 13 shows sentence 1. The red colour indicates violent 
words. According to the figure, සාමෙ; (peace) is identified as 
a violent word. 

Figure 13. SHAP output of sentence 1 

 
IG and LIME have produced different outputs. Red and green 
colors indicate violent and nonviolent words, respectively. 
Figure 14 shows sentences 1 and 2 for IG. According to 
thoutput, sentence 1 is identified as nonviolent (the predicted 
label is 0). Violent words are not highlighted in the text either. 

Figure 14. IG results for sentences 1 and 2 

 

V. CONCLUSION 

In the context of classifying images posted based on hate 
speech, unsupervised learning algorithms achieved 73% 
accuracy. Increased dataset size, along with characters encoded 
using Unidecode, has resulted in a 92% accuracy for shallow 
machine learning algorithms. Comparable results were 
obtained for BoW and TF-IDF, with slightly higher results for 
BoW. Models that employ GRU have achieved 91% accuracy. 
Models with 1D CNN achieved 90% accuracy, and the XLM-
R algorithm obtained 93% accuracy. RNN architectures that 
employ LSTM have shown lower results than models that 
incorporate GRU and 1D CNN. However, LSTM with the 
CNN model obtained 89% accuracy. 
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In most cases, data augmentation has improved the results of 
models employing the GRU architecture. Among the models 
that employ GRU, slightly better results have been obtained for 
word2vec than for fastText. LIME has shown better 
interpretation than SHAP and IG. Supervised learning of text 
classification produced better results than unsupervised 
learning for identifying violent Sinhala image posts. This 
research can be further enhanced by extracting the text from 
image posts automatically using a text extraction method. 
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ABSTRACT Cloud computing is one of the most rapidly growing computing concepts in today's information technology 
world. It connects data and applications from various geographical locations. A large number of transactions and the hidden 
infrastructure in cloud computing systems have presented the research community with several challenges. Among these, 
maintaining cloud network security has emerged as a major challenge. It is critical to address issues in the quickly changing 
cloud computing market in order to guarantee that businesses can fully utilize cutting-edge technology, uphold strong 
security protocols, and maximize operational effectiveness. Businesses that successfully navigate these obstacles can 
maintain their competitiveness in a dynamic digital ecosystem by improving scalability, leveraging the flexibility provided 
by the cloud, and adapting to technological changes with ease. Anomaly detection (or outlier detection) is the identification 
of unusual or suspicious data that differs significantly from the majority of the data. Research on anomaly detection in 
cloud network data is crucial because it enables businesses to more rapidly and efficiently recognize potential security 
threats, network performance concerns, and other issues. Recently, machine learning methods have demonstrated their 
efficacy in anomaly detection. This research aimed to introduce a novel hybrid model for anomaly detection in cloud 
network data and to investigate the performance of this model in comparison to other machine learning algorithms. The 
research was conducted with the UNSW-NB15 anomaly dataset and employed various feature selection and pre-processing 
techniques to prepare the data for model training. The hybrid model was built using a combination of Random Forest and 
SVM algorithms and the process was evaluated using metrics such as F1-Score, Recall, Precision, and Accuracy. The result 
showed that the hybrid model has 94.23% accuracy and a total time of 109.92s which is the combination of the train time 
of 100.45s and prediction time of 9.47s. The limitations of the study include the class imbalance problem in the dataset and 
the lack of real-world applications for testing. The research suggests future work in the application of hybrid models in 
anomaly detection and cloud network security and the need for further investigation into the potential benefits of such 
models. 
 
KEYWORDS: Anomaly Detection, Cloud Computing, Machine Learning, Monitoring

I. INTRODUCTION 

The technology of cloud computing virtualization provides 
efficient resources for end users. The characteristics of cloud 
computing include manageability, scalability, and availability. 
In addition, cloud computing has the advantages of economy, 
on-demand service, convenience, universality, multi-tenancy, 
flexibility, and stability [27]. Cloud computing mainly provides 
three service delivery models and four development patterns: 
infrastructure as a service (IaaS), platform as a service (PaaS) 
and software as a service (SaaS), public cloud, private cloud, 
hybrid cloud, community cloud, and virtual private cloud [29]. 
Today, cloud computing has integrated with other computing 
technologies like fog computing, grid computing, Docker 

containers, IoT, etc [28], [30], [31]. Cloud security is one of the 
most important aspects of cloud computing because it involves 
thousands of user transactions, information, and 
communication. The availability, integrity, and confidentiality 
of cloud computing platforms or services must be ensured to 
provide secure cloud computing platforms/services. Security 
vulnerabilities and challenges arise from the usage of cloud 
computing services. Currently, cloud computing models are the 
primary source of these challenges and vulnerabilities [32]. The 
intruders exploit the weakness of cloud models in accessing the 
users’ private data, by attacking the processing power of 
computer systems [3]. 
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An anomaly is an observation that differs so significantly from 
previous observations that it raises suspicion that it was caused 
by a distinct mechanism. It's frequently a sign of something 
unexpected or problematic happening. Anomaly detection is 
the identification of rare item events or observations that raise 
suspicion by differing significantly from the majority of data. 
They are slightly or majorly different from the majority of data 
and anomaly detection can help to find outliers and problems 
in data. In other words, anomalies are data points or patterns in 
a dataset that differ significantly from the expected or usual 
behavior. These anomalies can be produced by several things, 
including measurement errors, sensor malfunction, data 
corruption, or system failure, and they can happen 
spontaneously or as a result of mistakes in data collecting or 
processing. Finding these odd data points or patterns in a 
dataset that are frequently a sign of a deeper issue or problem 
is called anomaly detection. A dataset may contain a variety of 
anomalies, including point anomalies that only affect a single 
instance of data, contextual anomalies that only occur under 
certain circumstances, collective anomalies that involve 
multiple data points that behave similarly, and collective 
contextual anomalies that involve multiple data points that 
behave similarly only under certain circumstances. In several 
fields, including network intrusion detection, fraud detection, 
defect detection, and monitoring of complex systems, anomaly 
detection is a critical step [6][7]. 

 
Finding strange or unexpected data points or patterns in a 
dataset is the process of anomaly detection. Anomalies can be 
found using a variety of techniques, such as statistical 
techniques, clustering, classification, deep learning, distance-
based techniques, and time-series-based techniques. Quantiles, 
standard deviation, and other statistical metrics are used in 
statistical procedures to detect data points that significantly 
depart from the norm. Anomalies are data points that do not 
belong to any cluster and are grouped by clustering algorithms. 
To categorize new data points as normal or abnormal, 
classification algorithms are trained on labeled data. Deep 
learning algorithms discover the underlying structure of the 
data and the location of data points that deviate from this 
pattern to find anomalies. Measures of the distance between 
data points are used by distance-based algorithms to detect data 
points that are far away from other ones. To identify anomalies, 
time-series-based algorithms employ techniques like moving 
average, exponential smoothing, ARIMA, and Prophet. A 
combination of several methods is frequently used to boost the 
robustness and accuracy of anomaly detection. The choice of 
the method relies on the nature of the data and the particular 
requirements of the application [2]. 

 
The connection between cloud network data and anomaly 
detection is it provides an analysis of unusual activities, and 
unexpected activities through anomaly detection algorithms. 
Effective monitoring and security procedures are becoming 
more and more important as more businesses shift their data 

and apps to the cloud. Anomaly detection can aid in the 
identification of potential security vulnerabilities and 
performance problems, enabling businesses to take 
preventative action to lessen these risks and their effects on 
operations. A wealth of knowledge regarding the functionality, 
security, and use of cloud-based systems is contained in cloud 
network data. Log files, performance indicators, network 
traffic, and other sorts of data are examples of this data. These 
data can be examined by anomaly detection algorithms to find 
patterns or anomalies that point to issues with the network or 
its elements, such as security breaches, performance issues, or 
other suspicious activities. Additionally, anomaly detection in 
cloud network data aids organizations in conforming to several 
legal standards about the security, privacy, and integrity of their 
data. Automated anomaly detection is a crucial tool for 
preserving the security and dependability of cloud-based 
systems since it gets more challenging to manually detect and 
react to anomalies as more data is stored and processed in the 
cloud [1][6]. 

 
II. MOTIVATION 

The goal of anomaly detection is to use approaches that can 
discover relevant anomalies in data without producing a large 
number of false positives. 

 
Cloud security is one of the most important aspects of cloud 
computing because it involves thousands of user transactions 
and information. The availability, integrity, and confidentiality 
of cloud computing platforms or services must be ensured to 
provide secure cloud computing platforms/services. Security 
vulnerabilities and challenges arise from the usage of cloud 
computing services. Currently, cloud computing models are the 
primary source of these challenges and vulnerabilities. The 
intruders exploit the weakness of cloud models in accessing the 
users’ private data, by attacking the processing power of 
computer systems [8][10]. 

 
The detection of anomalies in data has a long history and a wide 
range of applications. An anomaly or outlier is an observation 
that differs so significantly from other observations that it 
raises the possibility that it was generated by a different 
mechanism. It can also be defined as an outlier observation that 
shows up to deviate significantly from the rest of the sample 
members in which it occurs. 

 
Due to the complexity of modern systems, highly available 
cloud service requirements in a cloud environment are difficult 
to guarantee and can thus only be ensured with great effort. As 
a result of these trends, there is an increasing demand for 
intelligent applications that automatically detect anomalies and 
provide suggestions for solving or at least mitigating problems 
so that a negative impact on service quality does not cascade. 
What constitutes an anomaly in each case is determined by the 
sample and the methodology. Anomalies are classified into 
three types in general: Anomalies can be classified into three 
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types namely point anomalies, collective anomalies, and 
contextual anomalies. There are primarily three approaches for 
detecting anomalies (machine learning, deep learning, and 
statistical approach). After reviewing previous studies, the 
study discovered that machine learning outperforms the other 
two methods in detecting abnormalities. Although the practice 
mentioned above provides ways to detect anomalies in a 
dataset. The research community still knows little about which 
is the most suitable algorithm for detecting anomalies within a 
cloud environment. The author is motivated to close this gap of 
knowledge and try to use a specific machine learning algorithm 
to detect anomalies using a data set. After analyzing the team 
can decide whether this algorithm is suitable or not for 
detecting anomalies within a cloud network [4][5][10][24]. 

 
A. Significance of the study 

It is critical to address anomaly problems in cloud computing 
platforms because they have an immediate effect on the 
security and dependability of digital infrastructure. Anomalies 
can jeopardize data integrity and result in breaches and 
unauthorized access, regardless of whether they are caused by 
malevolent activity or system malfunctions. It is imperative to 
promptly identify and address irregularities in order to 
assurance the unceasing procedure of cloud-based services, 
protect confidential data, and uphold user confidence. In the 
quickly changing world of digital technology, proactive tactics 
for anomaly management not only improve the general 
resilience of cloud systems but also help to build a strong 
cybersecurity foundation.  
 
B. Research objectives 

To keep a clear direction within the research study, below 
research objectives (RO) were made. 
 
RO1: To introduce a novel hybrid model and compare the 

performance of the hybrid model to other machine learning 

models, such as single-algorithm models, in detecting 

anomalies in cloud network data. 

 

RO2: To look into how different algorithmic combinations 

affect, how well the hybrid model performs while looking for 

anomalies in data from cloud networks. 

 

RO3: To investigate how well the novel hybrid model handles 

various data kinds and investigate how various feature 

selection and pre-processing techniques affect the novel hybrid 

model's ability to detect anomalies in cloud network data. 

 
C. Contribution of the paper 

By presenting a novel hybrid model that combines Random 
Forest (RF) and Support Vector Machine (SVM) techniques, 
the research significantly advances the subject of anomaly 
detection in cloud network data. This hybrid method offers a 
unique solution for anomaly detection problems, marking a 
significant deviation from the traditional application of single-

algorithm models. In contrast to stand-alone RF models, the 
hybrid model aims to improve detection robustness and 
accuracy by combining the advantages of both RF and SVM. 
 
One of the primary contributions is the extensive testing of the 
proposed hybrid model against multiple machine learning 
methods, including multiple RF and SVM configurations and 
an MLP model. 

 
III. RESEARCH METHOD 

Machine learning models such as Isolation Forests, One-Class 
SVM, and Autoencoders are frequently employed in anomaly 
identification. These models are significant because, in the 
absence of labeled training data, they are highly effective at 
identifying patterns and abnormalities in a variety of datasets. 
One-Class SVM is skilled at identifying outliers in high-
dimensional spaces, Autoencoders learn intrinsic data 
representations, and Isolation Forests effectively isolate 
anomalies by building random decision trees. These tools are 
useful for detecting deviations from normal patterns in a variety 
of applications, including cybersecurity and system 
monitoring. This approach involves building up a hybrid model 
combining SVM and random forest algorithms. This research 
used the UNSW-NB15 dataset for the study. The methodology 
is concluded here after identifying and analyzing the 
comparisons between different algorithm models. 
 
The combined strengths of Random Forest (RF) and Support 
Vector Machine (SVM) in handling different areas of anomaly 
detection in cloud network data led to their selection for the 
hybrid model. As an ensemble learning technique, RF is well-
known for its stability and resistance to overfitting. It is 
particularly good at capturing complicated relationships within 
data. However, SVM is good at managing non-linear patterns 
by determining optimal decision boundaries, especially when 
employing non-linear kernels. The hybrid model combines the 
power of SVM's ability to identify distinct decision boundaries 
with the versatility of RF's modeling techniques to attempt to 
capitalize on the differences between the two approaches. 
 
A. Gather Relevant Data  

The UNSW NB15 dataset was used in this research study to 
study the usage of cloud network data to detect anomalies. The 
loading of the UNSW NB15 dataset was the first stage in the 
study procedure. The dataset included network traffic 
information that can be used to develop and test anomaly 
detection methods. 

 
B. Pre-processing and Feature Selection  

Preprocessing the dataset came after the data had been loaded. 
Make sure the data is prepared for usage in the feature selection 
process, this may involve cleaning and normalizing it. The 
process of choosing a subset of the features in a dataset that is 
most important for anomaly detection is known as feature 
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selection. Techniques like correlation analysis or mutual 
information can be used for this. 

 
C. Train the Model 

The process of training models using the chosen features 
followed the feature selection phase. The dataset was divided 
into training and testing sets, and several anomaly detection 
models were trained and evaluated using these sets. In this 
study, models like Random Forest (Estimators = 100), Random 
Forest (Estimators = 50), Random Forest (Estimators = 150), 
SVM (Kernel - rbf, gamma-scale), SVM (Kernel - sigmoid, 
gamma-scale), SVM (Kernel - poly, gamma-scale), and a 
hybrid model that combined the best features of Random Forest 
and SVM models were used. 
 
D. Analyze the Model 

A comparison was done once the models had been trained and 
assessed to see which model performed the best on the UNSW 
NB15 dataset. The evaluation measures used in the comparison 
included accuracy, precision, recall, and F1-score. The 
comparison's findings were used to evaluate the performance 
of various models for finding anomalies in cloud network data. 
 
E. Summary of the Methodology  

In conclusion, the study used the UNSW NB15 dataset to 
evaluate the hybrid model through preprocessing, feature 
selection, model training using random forest models, SVM 
models, and a hybrid model, and comparing all the models to 
determine which is the best. 
 
This research study recommended the following methodology 
step-wise to better understand: 
 

 Data collection: The UNSW-NB15 anomaly dataset 
was used.  

 Data preprocessing and feature selection: The data 
was preprocessed and features were selected for the 
training and testing sets.  

 Model training: The model was trained using 
Random Forest and SVM algorithms [34].  

 Hybrid model construction: A novel hybrid model 
was built due to their higher accuracy and other 
aspects. 

 Model evaluation: The performance of the novel 
hybrid model was evaluated and compared to that of 
other machine learning models, such as single-
algorithm models, Random Forest (Estimators = 100), 
Random Forest (Estimators = 50), Random Forest 
(Estimators = 150) and SVM (Kernel - rbf, gamma - 
scale), SVM (Kernel - sigmoid, gamma - scale), SVM 
(Kernel - poly, gamma - scale), and MLP(ANN) 
model.  

 Data analysis: The results were analyzed and 
discussed in terms of the research objectives, 
including the impact of various algorithmic 

combinations on the performance of the hybrid model, 
the performance of the hybrid model compared to that 
of single-algorithm models, and the potential future 
research pathways for the application of hybrid 
models in anomaly detection and cloud network 
security.  

 Limitations and recommendations: The limitations 
of the study were identified as the class imbalance 
problem in the dataset and future research 
recommendations were made to address the class 
imbalance problem in the dataset, further investigate 
the potential of hybrid models in anomaly detection 
and cloud network security, and investigate the rate of 
false positives and false negatives, computational 
resources and the ease of understanding of the hybrid 
model. 
 

IV. DESIGN, IMPLEMENTATION, AND ANALYSIS 

OF THE RESULTS 

This section describes the model’s design comprehensively 
with the model’s basic architecture and the proposed model's 
workflow. Here several diagrams are presented and discussed 
to explain model functions. The technologies, algorithms, 
special methods, and functions used in implementation were 
defined in this section. Further, this section discussed the 
findings of the phases of implementation. 
 
A. Gathering the Relevant Data Set 

The UNSW-15 dataset was a good option for the study since it 
offers a thorough assessment of the proposed approach's 
capacity to recognize various sorts of attacks. The dataset 
included both known and undiscovered attack types, allowing 
for the evaluation of the approach's capacity to identify several 
distinct attacks. Additionally, a thorough evaluation of the 
performance of the approach is possible due to the dataset's size 
and abundance of instances. The dataset also included real-
world network traffic statistics, enhancing the relevance and 
applicability of the study's findings to real-world 
circumstances. Furthermore, the performance of the proposed 
technique in other current ways can be easily compared thanks 
to the UNSW-15 dataset, which is a well-known and often-used 
dataset in the field of network intrusion detection. A fair 
assessment of the performance of the suggested strategy is 
possible thanks to the dataset's balance, which includes a 
sufficient number of both normal and attack occurrences. The 
dataset is additionally current and contains up-to-date network 
traffic data, increasing its applicability to current real-world 
settings.  
 
Loading Data  

First, the author read a CSV file and created a DataFrame object 
in Python using the Pandas module. In particular, it loads the 
data from the CSV file at the supplied file path using the read 

csv() function and stores it in the variable 'df'. The DataFrame 
is a strong and adaptable data structure that makes it simple to 
manipulate and analyze data presented in tabular form. The 
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Figure 1: Information of the loaded data 

author then used to show the data frame's first five rows. This 
can be helpful for rapidly verifying that the data has been 
loaded properly and previewing the contents of the DataFrame. 
Table 1 presents the whole content for the loaded data in the 
study.  

Table 1: The content of the loaded data 

ind

ex 

id dur pro

to 

ser

vice 

stat

e 

spk

ts 

dpk

ts 

sbyte

s 

0 1 1.10E-05 udp - INT 2 0 496 

1 2 8.00E-06 udp - INT 2 0 1762 

2 3 5.00E-06 udp - INT 2 0 1068 

3 4 6.00E-06 udp - INT 2 0 900 

4 5 1.00E-05 udp - INT 2 0 2126 

 
Further, figure 1 demonstrates the metadata of the loaded data 
comprehensively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, table 2 displays a tabular description of the loaded 
data.  

Table 2: Description of the loaded data 

 id dur spkts dpkts sbytes dbytes 

cou

nt 
82332 82332 82332 82332 82332 82332 

mea

n 
41166.
5 

1.0067
56 

18.666
47 

17.545
94 

7993.9
08 

13233.79 

std 23767.
35 

4.7104
44 

133.91
64 

115.57
41 

171642
.3 

151471.5 

min 1 0 1 0 24 0 

25% 20583.
75 

8.00E-
06 

2 0 114 0 

50% 41166.
5 

0.0141
38 

6 2 534 178 

75% 61749.
25 

0.7193
6 

12 10 1280 956 

max 82332 59.999
99 

10646 11018 143557
74 

14657531 

B. Data Pre-Processing and Feature Selection 

Pre-processing the data is a crucial stage in the methodology of 
the study since it guarantees that the UNSW-15 dataset is in a 

format that the model can use. The UNSW-15 dataset's data 
pre-processing may entail several important procedures. 
 
Removal of Irrelevant Columns  

To remove particular columns from the DataFrame, the author 
used the DataFrame function drop(). It starts by making a list 
of the columns that should be deleted, author dropped "id" and 
"attack cat." The drop() method was then called with this list as 
its first argument. When axis=1 is used as the second 
parameter, pandas is instructed to remove the columns. The 
third parameter, inplace=True, is set to mean that the original 
DataFrame should be used for the operation. As a result, this 
will delete the columns "id" and "attack cat" from the 
DataFrame "df," update the original DataFrame to reflect the 
deletion of those columns, and return no new DataFrame. 
 
Clamping 

Clamping is a preprocessing method for reducing the range of 
values in a dataset. It is usually applied to stop outliers from 
skewing the results of subsequent processes, including 
statistical analysis or machine learning. Putting a maximum 
and minimum threshold for the values in a dataset entails 
"clamping," or setting any values outside of this range to the 
threshold value closest to them. This can help prepare data for 
analysis and clean it, which can also help to increase the 
precision and stability of machine learning models. In this 
research, the author prunes extreme values to make 
distributions less skewed. Features are reduced to the 95th 
percentile when their maximum values exceed 10 times the 
median value.  
 
In summary, the author produces descriptive statistics for the 
numeric columns after first filtering the original DataFrame to 
only include those columns. The outcome is a new DataFrame 
that gives an overview of the distribution of data in the original 
DataFrame's numerical columns. Then, the author determines 
whether the maximum value of any column is bigger than 10 
times the median value and greater than 10, and if it is, it 
replaces the values in that column with the 95th percentile's 
value if they are higher, else the value is left alone. If the 
DEBUG setting is set to 1, each column will print some 
information; otherwise, nothing will be printed.  
 
Apply the log function on skewed-right numerical numbers 

The author added one to each value before applying the natural 
logarithm to the values of each column in the numeric 
DataFrame df numeric if that column's minimum value is zero 
and there are more than 50 unique values in that column. This 
avoids using the undefined log(0). If the DEBUG setting is set 
to 1, each column will print some information; otherwise, 
nothing will be printed. 
 
Reduce labels in categorical features 

Reducing the cardinality of features to 5 or 6. Take the top 5 
occurring labels in the feature as labels and set the remainder 
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to '-' as seldom used labels. In this, the author determines 
whether each given column has more than six distinct values. 
If this is true for any given column, the value in that column is 
replaced with a '-' if it is not one of the most frequent values 
there; otherwise, it is left alone. If the DEBUG setting is set to 
1, each column will print some information; otherwise, nothing 
will be printed. The scenario for reducing the labels in 
categorical features is presented in Table 3 below.  
 

Table 3: Reduce labels in categorical features 

index proto service state 

count 82332 82332 82332 

unique 131 13 7 

top tcp  -  FIN 

freq 43095 47153 39339 

 

Best Features 
Univariate statistical tests to determine which features best 
predict the target feature. Utilizing Python's scikit-learn 
module, choose the best features from a DataFrame, and 
display the outcomes. For feature selection, it first imports the 
required modules SelectKBest and chi2. The SelectKBest class 
is then created with the chi2 scoring function and the input 
k='all', instructing it to select all characteristics. The best 
features object is fitted to the input data by taking into account 
the goal variable y and the input data X. The scores and feature 
names are concatenated to produce a new DataFrame. The new 
DataFrame's columns now go by the names "feature" and 
"score." The DataFrame is then sorted based on the feature 
scores, and a bar chart is generated to show the top 21 features. 

Figure 2 presents a bar chart for the top features.  

 
Figure 2: A bar chart for the top features 

Encoding Categorical Features  

One-hot encoding is used. None of the categorical features are 
ordinal. In this study, the author tried picking particular rows 
and columns from the original DataFrame "df" to create two 
new variables, "X" and "y," and it is displaying the first five 

rows of the DataFrame "X". The particular encoding 
categorical features are presented in table 4.  
 

Table 4: Encoding Categorical Features 

inde

x 

dur prot

o 

serv

ice 

state spkts dpkt

s 

sbytes 

0 1.10E-

05 

udp - INT 0.6931

47 

0 6.2065759

27 

1 8.00E-

06 

udp - INT 0.6931

47 

0 7.4742048

06 

2 5.00E-

06 

udp - INT 0.6931

47 

0 6.9735430

2 

3 6.00E-

06 

udp - INT 0.6931

47 

0 6.8023947

63 

4 1.00E-

05 

udp - INT 0.6931

47 

0 7.6619975

59 

 
After that, the author used the "OneHotEncoder" class to apply 
the One-Hot-Encoding approach to columns 1, 2, and 3 of the 
DataFrame X while leaving the other columns alone to be 
handled by the "ColumnTransformer" class. Additionally, a 
numpy array was being created from the encoded DataFrame.  
 
After that, unique values of a few columns in a DataFrame are 
extracted using Python's Pandas package, and they are then 
inserted into a list of feature names in a certain order. These 
three for loops iterate over the distinct values of the 'state', 
'service', and 'proto' columns of the DataFrame 'df' and add 
them to the list of feature names in reverse order while 
excluding the first element. To facilitate additional analysis or 
model training, the author has included the distinctive values 
from these columns in the list of feature names. 
 
C. Modeling and Evaluation 

This entails training the SVM and random forest parts of the 
hybrid algorithm, training and test split, standardizing 
continuous features, training with random forest and SVM 
separately, and implementing a hybrid model and comparison.  
 
Train Set Split  

Using stratified sampling, the data in this part are divided into 
training and test sets. The input data "X" and the target variable 
"y" are divided into two datasets: the training set and the testing 
set, using the scikit-learn library. The dataset, the percentage of 
the dataset that should be given to the testing set, a random seed 
to assure repeatability, and the stratification of the data are all 
inputs to the "train test split" function, which was employed by 
the author in this study. The 'X train', 'X test', 'Y train', and 'Y 
test' datasets will be utilized for the models' training and testing, 
respectively. This split is an essential stage in the machine 
learning process because it enables the author to predict how 
well the model will perform on new data and avoid overfitting. 
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Figure 3: Prediction (Random Forest 100) 

Figure 4: Model Performance (Random forest 
100) 

Figure 5: Confusion Matrix (Random Forest 100) 

Standardize continuous features 

The continuous features are scaled using a standard scaler to 
ensure that they are all in the same size order. To normalize the 
numerical features of the training and test datasets, use the 
scikit-learn library. It makes use of the "StandardScaler" class 
from the library's "preprocessing" module to scale the 
numerical features to unit variance and standardize them by 
removing the mean. By utilizing the 'fit transform()' method, 
which first fits the scaler to the data before transforming it, it 
generates an instance of the 'StandardScaler' class and applies 
it to the numerical characteristics of the training dataset. The 
test dataset's numerical features are then normalized using the 
transform() method using the same instance of the scaler. The 
efficiency and stability of the models can be enhanced by 
normalizing the numerical features, which is a crucial step 
because many Machine Learning methods are sensitive to the 
scale of the data.  
 
Following that, the author constructs an empty dataframe called 
"model performance" and imports much time-related, 
performance-related metrics from the scikit-learn library. The 
dataframe comprises seven columns, including "Accuracy," 
"Recall," "Precision," "F1-Score," "train time," "pred time," 
and "total time." The time-related functions from the Python 
library were used to assess the time spent on training and 
prediction of the model, and the imported performance metrics 
from the scikit-learn library were used later to evaluate the 
performance of a machine learning model. This dataframe was 
used to store these measurements for later examination. 
 
Random Forest 

The author is making predictions on the test dataset while 
training a Random Forest classifier in Python using the scikit-
learn library. It generates an instance of the class, imports the 
RandomForestClassifier class from the library's ensemble 
module, and then trains the model using the training dataset. 
Using a time module also keeps track of the length of time spent 
on training and prediction. After making the predictions, the 
author made predictions on the test dataset using the trained 
model's prediction approach. The Random Forest Classifier is 
an ensemble method that uses averaging to increase predicted 
accuracy and reduce over-fitting. It trains numerous decision 
trees on different subsamples of the dataset. The summary data 
for the Random Forest 100 prediction is presented in Figure 3. 
 
 
 
 
 
On a test dataset, this algorithm assessed how well a Random 
Forest classifier model performs. It computes several 
performance metrics, including accuracy, recall, precision, and 
f1-score, using the scikit-learn module. It also determines how 
long training and prediction will take. Additionally, it prints the 
times and performance indicators in a more readable manner. 

The results are then saved in a dataframe for future study. 
Figure 4 presents the model performance data (Random Forest 
100).  
 
 
 
 
 
 
 
 
 
On a test dataset, the author plotted a confusion matrix for a 
Random Forest classifier model. A table called the confusion 
matrix is used to describe how well a classification algorithm 
performs. The matrix is generated using the scikit-learn 
library's plot confusion matrix function, which takes the model, 
test data, and true labels as inputs. The plot is displayed with a 
white background and a chosen size of 5 x 5. Figure 5 presents 
the Random Forest 100 Confusion Matrix.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The top 20 features of the Random Forest classifier model are 
then plotted according to their importance using the scikit-learn 
package, and the plot was displayed in a 10 x 10-inch format 
with a white background. Additionally, it removed the top and 
right spines from the plot and flipped the y-axis such that the 
most significant feature was at the top. 
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Figure 7: Predictions (Random Forest 50) 

Figure 8: Model Perfromance (Random Forest 50) 

Figure 9: Confusion Matrix(Random Forest 50) 

Figure 10: Predictions (Random Forest 150) 

Figure 11: Model Performance (Random Forest 150) 

Figure 12: Confusion Matrix (Random Forest 150) 

Figure 13: SVM (Kernel - rbf, gamma - scale) Predictions 

Figure 14: SVM (Kernel - rbf, gamma - scale) Model Performance 

 
Figure 6 presents the top 20 features of Random Forest for 100 
estimators.  
 
The author used the above concepts for Random Forest 
(Estimators = 50) and Random Forest (Estimators = 150) and 
got the following results. Figure 7 presents the prediction for 
Random Forest 50.  
 
 
 
 
 
Further, figure 8 presents the performance of the model for 
Random Forest 50.  
 
 
 
 
 
 
 
 
Figure 9 presents the Confusion Matrix for the Random Forest 
50.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As presented in Figure 10, the Model Prediction for Radom 
Forest 150 is available.  
 
 
 
 
 
Further, figure 11 presents the model performance for Random 
Forest 150.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to Figure 12, the Confusion Matrix for Random 
Forest 150 was presented.  
SVM 

After calculating results using the Random Forest algorithm, 
the author tried to apply these logics to the SVM algorithm.  
 
The scikit-learn library was used by the author to train and test 
a Support Vector Machine (SVM) classification model. The 
kernel = 'rbf' and gamma ='scale', which were parameters of the 
RBF kernel, were used to fit the model to the training data. This 
generated an instance of the SVM class. On the test dataset, it 
used the trained model to generate predictions. It also kept track 
of how long training and prediction take. The cell's execution 
time was also gauged. The gamma parameter was 
automatically scaled by 1 / (n_features * X.var()), where n 
_features were the total number of features and X.var() was the 
variance of the training dataset, using the 'rbf' kernel and 
gamma ='scale' in the code. Figure 13 presents the SVM 
predictions for (Kernal – rbf, gamma – scale).  
 
 
 
 
 
Then, using accuracy, recall, precision, F1-score, time for 
training, time for prediction, and total time, the author assessed 
the SVM model's performance on the test dataset and recorded 
the findings in a dataframe for later use. The model's 
performance is then recorded in a dataframe for future use, and 
the assessment metrics and time measurements are written out 
in a human-readable format. The SVM model performance for 
(Kernal – rbf, gamma – scale) was presented in Figure 14.  
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Figure 15: Confusion Matrix for SVM (Kernel - rbf, gamma - 
scale) 

Figure 16: SVM (Kernel - sigmoid, gamma - scale) Predictions 

Figure 18: Confusion Matrix for SVM (Kernel - sigmoid, 
gamma - scale) 

Figure 17: SVM method performance for 
(Kernel - sigmoid, gamma - scale) 

Figure 19: SVM (Kernel - poly, gamma - scale) Predictions 

Figure 20: SVM method performance for 
(Kernel - poly, gamma - scale) 

Figure 21: Confusion Matrix for SVM (Kernel - poly, gamma 
- scale) 

The predictions provided by the SVM model on the test dataset 
are then plotted as a confusion matrix by the author. The model, 
"X test," and "y test" were used as input arguments for the "plot 
confusion matrix" function, which creates the confusion 
matrix. The figurine has a 5.5-inch height and a blue color 
scheme. The 'plt.show()' function was used to show the plot. It 
was used to visually assess the model's performance and 
determine which class the model successfully predicted and 
which class it incorrectly forecasted. Figure 15 presents the 
Confusion Matrix for SVM (Kernel - rbf, gamma - scale).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After that, the author used the above concepts to SVM (Kernel 
- sigmoid, gamma – scale) and SVM (Kernel - poly, gamma - 
scale). The following results were obtained from the study. 
 
The SVM prediction for (Kernel - sigmoid, gamma - -scale) 
was presented in Figure 16.  
 
 
 
 
 
The SVM method performance for (Kernel - sigmoid, gamma 
- -scale) was presented in Figure 17.  
 
 
 
 
 
 
 
 
 
Further, the Confusion Matrix for SVM (Kernel- - sigmoid, 
gamma - scale) was presented in Figure 18. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The SVM prediction for (Kernel - poly, gamma - -scale) was 
presented in Figure 19.  
 
 
 
 
 
The SVM method performance for (Kernel - poly, gamma - -
scale) was presented in Figure 20.  
 
 
 
 
 
 
 
 
 
Further, the Confusion Matrix for SVM (Kernel - poly, gamma 
- -scale) was presented in Figure 21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

ANN - MLP 
The Multilayer Perceptron (MLP) is a Feedforward Neural 
Network (FNN). The MLP is trained using scikit-
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Figure 22: ANN - MLP Predictions 

Figure 23: ANN - MLP Method Performance 

Figure 24: ANN - MLP Confusion Matrix 

Figure 25: Predictions for Hybrid Model 

Figure 26: Method Performance - Hybrid  
Model 

MLPClassifier learn on a dataset ('X train', 'y train') with certain 
hyperparameters defined, and the learned model is then used to 
make predictions on another dataset ('X test'). Additionally, it 
measured how long it takes to train the model and generate 
predictions using Python's time library. In conclusion, the 
author tested and trained an MLP classifier. As in Figure 22, 
the ANN – MLP prediction was captured.  
 
 
 
 
 
 
The performance of a trained MLP model was assessed by the 
following. In this research study, the author used a variety of 
evaluation metrics, including accuracy, recall, precision, and 
F1-score. These evaluation metrics were then printed along 
with the time that it took to train the model, make predictions, 
and evaluate the performance overall. All evaluation metrics 
and time were then saved in a dataframe for comparison at a 
later time. It is a summary of the model's performance. The 
ANN – MLP method performance is presented in Figure 23.  
 
 
 
 
 
 
 
 
Next, the author used the scikit-learn library's 'plot confusion 
matrix' function to create and present a confusion matrix for the 
trained MLP model on the test dataset. Figure 24 presents the 
Confusion Matrix for ANN – MLP.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
**Although this study used the ANN – MLP model for 

analyzing purposes.  To build the hybrid model, the research 

team did not use the ANN-MLP model. 

 
 
Hybrid Model 

The hybrid model was created by combining the Random 
Forest Model and the SVM model. The Random Forest was 

used to pre-process the data and to select the most relevant 
features, followed by the SVM model to classify the data based 
on the selected features. 
 

 Random Forest Classifier with 150 estimators was 
used as it yielded the best results in all Random Forest 
models.  

 SVM with poly kernel was used as it yielded the best 
result among SVM models. 

 
In this research study, a new model that combined the Random 
Forest Classifier and SVM Classifier was trained. It began by 
training a Random Forest Classifier with 150 estimators, then 
used the trained Random Forest model to select the most crucial 
features from the training data. It set a threshold of "median," 
which meant that features that were not crucial enough were 
eliminated from the dataset. The 'X train important' variable 
was used to keep the training data after it had been modified to 
include only the most crucial attributes. The test data, which 
was kept in the 'X test important' variable, went through the 
same procedure. The important features from the 
X_train_important data were then used to train an SVM model 
with a polynomial kernel. Then, using the X_test_important 
data and the trained SVM model, it made predictions. It also 
computed the accuracy, recall, precision, and F1-score of the 
predictions using the y_test data and measured the time 
required to train the model and make predictions. Figure 25 
presents the predictions for the hybrid model.  
 

 
 
The author evaluated the performance of a hybrid model that 
combined the Random Forest model's feature selection method 
with the Support Vector Machine's classification algorithm 
(SVM). The most crucial characteristics were chosen from the 
training set by the Random Forest model, and the SVM was 
subsequently trained using this smaller feature set. The 
accuracy, recall, precision, and F1-Score are then used to assess 
the hybrid model's performance, and the time it took to train 
and the forecast was also noted. For later comparison with 
different models, the outcomes were then saved in the 
"model_performance" dataframe with the label "Hybrid 
(Estimators - 150, Kernel - poly, gamma - scale)". Figure 26 
presents the method performance for the hybrid method.  
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Figure 27: Confusion Matrix for Hybrid Method 

 
Then, using the 'SelectFromModel' feature selection technique, 
the author generated a confusion matrix for the SVM model 
that was fitted to the converted training data (X train important) 
and the transformed test data (X test important). The "Seaborn 
library's" "plot confusion matrix" method is used to display the 
confusion matrix as a 5x5-inch figure with a white background 
and a blue color map to represent it. By comparing the 
predicted values to the actual values in the test set, this matrix 
was used to assess the model's performance. Knowing how 
many false positives, false negatives, true positives, and true 
negatives the model produced is helpful. Figure 27 presents the 
Confusion Matrix for the Hybrid Model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model Comparison 

The author can anticipate seeing the performance measures 
(such as accuracy, recall, precision, and F1-score) of each 
model as well as their training and prediction timeframes from 
the model comparison. With the aid of this data, the author can 
compare the models and choose the one that offers the best 
overall performance or the best performance/computational 
efficiency trade-off. The confusion matrix for each model can 
also be used by the author to gauge how well it predicts the 
various classes. The overall model comparison is presented in 
Table 5.  
 

Table 5: Overall model comparison 

index Accu

racy 

Recal

l 

Preci

sion 

F1-

Score 

train

_time 

pred

_time 

total

_time 

Rando

m 

Forest 

(Estim

ators - 

100) 

 

0.977

59 

 

0.977

59 

 

0.977

67 

 

0.977

60 

 

7.744

32 

 

0.191

59 

 

7.935

9185 

Rando

m 

Forest 

(Estim

 

0.976

68 

 

0.976

68 

 

0.976

78 

 

0.976

69 

 

4.004

90 

 

0.096

96 

 

4.101

8745 

ators - 

50) 

Rando

m 

Forest 

(Estim

ators 

= 150) 

 

0.977

65 

 

0.977

65 

 

0.977

76 

 

0.977

66 

 

11.54

36 

 

0.276

33 

 

11.81

9950 

SVM 

(Kern

el - 

rbf, 

gamm

a - 

scale) 

 

0.950

20 

 

0.950

20 

 

0.951

27 

 

0.950

29 

 

94.21

05 

 

17.34

44 

 

111.5

5504 

SVM 

(Kern

el - 

sigmoi

d, 

gamm

a - 

scale) 

 

0.680

69 

 

0.680

69 

 

0.680

98 

 

0.680

82 

 

357.3

23 

 

29.79

81 

 

387.1

2117 

SVM 

(Kern

el - 

poly, 

gamm

a - 

scale) 

 

0.950

32 

 

0.950

32 

 

0.951

18 

 

0.950

40 

 

101.9

39 

 

10.00

80 

 

111.9

4741 

MLP 0.967

99 

0.967

99 

0.968

04 

0.968

00 

112.1

30 

0.047

86 

112.1

7792 

Hybri

d 

(Estim

ators - 

150, 

Kernel 

- poly, 

gamm

a - 

scale) 

 

 

0.942

309 

 

 

0.942

309 

 

 

0.942

45 

 

 

0.942

34 

 

 

100.4

496 

 

 

9.477

212 

 

 

109.9

267 

 
Performance Measures: 
 
The hybrid model, which used a combination of 150 estimators 
and a poly kernel with scale gamma, has an accuracy of 
94.2309%. This accuracy is lower than that of the Random 
Forest algorithm with 100 estimators (97.7592%) and the 
Random Forest algorithm with 50 and 150 estimators 
(97.6681% and 97.7652%, respectively), but higher than that 
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Figure 28: Model Performance - Accuracy 

Figure 29: Model Performance - Recall 

Figure 30: Model Performance - Precision 

of the SVM algorithm with sigmoid kernel and scale gamma 
(68.0695%). 
 
It could be argued that the specific combination of estimators 
and kernel used in the hybrid model may not be optimal and 
that a different combination may yield better performance. 
Figure 28 presents a comparative bar chart for the Model 
Performance under the accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29 presents the model performance comparison 
according to the recall.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The hybrid model, which used a combination of 150 estimators 
and a poly kernel with scale gamma, has a recall value of 
94.2309%. This recall is lower than that of the Random Forest 
algorithm with 100 estimators (97.7592%) and the Random 
Forest algorithm with 50 and 150 estimators (97.6681% and 
97.7652%, respectively). This suggests that the hybrid model 
is not as good at detecting positive instances (i.e., it has a higher 
number of false negatives) compared to the Random Forest 
algorithm with 100 estimators and the Random Forest 
algorithm with 50 and 150 estimators. 
 
Figure 30 presents the model performance comparison 
according to the precision.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The hybrid model, which used a combination of 150 estimators 
and a poly kernel with scale gamma, had a precision value of 
94.2459%. This precision was lower than that of the Random 
Forest algorithm with 100 estimators (97.7678%) and the 
Random Forest algorithm with 50 and 150 estimators 
(97.6780% and 97.7765%, respectively). This suggested that 
the hybrid model was not as good at detecting correct positive 
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Figure 31: Model Performance - F1 Score 

Figure 32: Model Comparison - train_time 

instances (i.e., it has a higher number of false positives) 
compared to the Random Forest algorithm with 100 estimators 
and the Random Forest algorithm with 50 and 150 estimators. 
 
Figure 31 presents the model performance comparison 
according to the F1 Score.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The hybrid model, which used a combination of 150 estimators 
and a poly kernel with scale gamma, has an F1-score of 
94.2344%. This is slightly lower than the Random Forest 
algorithm with 100 estimators, but higher than the SVM 
algorithm with sigmoid kernel and scale gamma. This 
suggested that the hybrid model had a good balance of 
precision and recall, but not as good as the Random Forest 
algorithm with 100 estimators. It's also important to note that 
the F1-score was a measure that seeks a balance between 
precision and recall, so a higher F1-score means a better 
balance of precision and recall. In this case, it can be observed 
that the Hybrid model is not the best in terms of F1-score but 
it's still quite good. 
 
 
 

Time Frames:  
 
The Hybrid model, which used a combination of 150 estimators 
and a poly kernel with scale gamma, has a train time of 65.38 
seconds. This train time was slower than the Random Forest 
algorithm with 100 estimators, but faster than the SVM 
algorithm with sigmoid kernel and scale gamma. This 
suggested that the Hybrid model had a relatively moderate train 
time compared to other models. However, it's important to 
consider the trade-off between train time and model 
performance. As we can see the Hybrid model had a good 
performance in terms of F1-score, the additional train time may 
be worth it if the performance gain was deemed significant for 
the specific application or domain.  
 
Figure 32 presents the model comparison according to the 
train_time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33 presents the model performance comparison 
according to the pred_time. 
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Figure 33: Model Comparison -pred_time 
Figure 34: Model Performance - Total Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Hybrid model, which used a combination of 150 estimators 
and a poly kernel with scale gamma, had a prediction time of 
6.31 seconds. This prediction time was slower than the Random 
Forest algorithm with 100 estimators and 50 estimators, but 
faster than the SVM algorithm with rbf kernel and sigmoid 
kernel with scale gamma. This suggests that the Hybrid model 
has a relatively moderate prediction time compared to other 
models. However, it's important to consider the trade-off 
between prediction time and model performance. As we can see 
the Hybrid model had a good performance in terms of F1-score, 
the additional prediction time may be worth it if the 
performance gain was deemed significant for the specific 
application or domain. 
 
Figure 34 presents the model comparison according to the total 
time.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the given output, it can be seen that the 'Hybrid 
(Estimators - 150, Kernel - poly, gamma - scale)' model has a 
total time of 71.691509 seconds, which was slower than most 
of the other models, particularly when compared to the Random 
Forest models and the MLP model. This suggested that the 
hybrid model may not be as computationally efficient as some 
of the other models in terms of the total time taken. 
 
Class imbalance problem 

The dataset's class imbalance problem poses a serious problem 
that affects the accuracy of the findings when it comes to 
anomaly detection in cloud network data. When the proportion 
of normal behavior to anomalous behavior is noticeably 
greater, an imbalance arises. This imbalance might, in practice, 
result in a model that performs well in predicting instances of 
the majority class (normal examples) but poorly in detecting 
cases of the minority class (anomalies). A model with great 
precision but low recall is one of the possible outcomes, which 
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could lead to a system that fails to recognize real security 
threats and ignores vulnerabilities. 
 
Looking ahead, resolving the issue of class imbalance becomes 
essential for subsequent studies. Investigating other balancing 
strategies, including oversampling, undersampling, or 
sophisticated approaches like the Synthetic Minority Over-
sampling Technique (SMOTE), is one possible direction. The 
purpose of these methods is to lessen the effect of class 
imbalance on model performance. A more resilient anomaly 
detection system may also benefit from the application of 
ensemble methods and the creation of more sophisticated 
hybrid models, particularly when those models are specifically 
made to manage unbalanced datasets. To gain a deeper 
comprehension of hybrid model performance in real-world 
scenarios, future research should expand evaluations to a wider 
range of real-world datasets. 
 
V.  CONCLUSION & RECOMMENDATIONS 

A. Discussion 

The main objective of this research was to introduce a novel 
hybrid model for detecting anomalies in cloud network data 
and to compare its performance to other machine learning 
models. The study used the UNSW-NB15 anomaly dataset for 
the experiments and preprocessed and selected features for the 
training and testing sets. The model training was done using 
Random Forest and SVM algorithms, and a novel hybrid model 
was built with Hybrid RF(Estimators - 150) and SVM(Kernel - 
poly, gamma - scale) due to their higher accuracy and other 
aspects. 
 
The results showed that the novel hybrid model performed 
somewhat poorly compared to the Random Forest models that 
were used alone, but the total time for the hybrid model was 
deemed acceptable. This was the first time that a hybrid model 
was used for the UNSW_NB15 dataset. The limitation of the 
study was the class imbalance problem in the dataset. 
 
The results of this study contributed to the understanding of 
how different algorithmic combinations affect the performance 
of a hybrid model in detecting anomalies in cloud network data. 
The study also highlights the importance of feature selection 
and pre-processing techniques in improving the performance of 
a model. However, the study also highlighted the need for 
further research to address the class imbalance problem in the 
dataset. 
 
One possible explanation for the poor performance of the 
hybrid model could be the combination of the two models. 
SVM and Random Forest used different approaches to solve 
classification problems, and combining them may not have 
resulted in an optimal solution. Another possible explanation 
could be the choice of parameters for the SVM, such as the 
kernel and gamma, which may not have been the best suited for 
the specific dataset used in this research. 

 
Based on the information provided, the contribution of the 
study can be summarized as follows: 

 Novel Hybrid Model: The study proposed a new 
hybrid model to detect anomalies in cloud network 
data. The model was built using two selected 
algorithms, SVM and Random Forest, and is 
compared to single-algorithm models to evaluate its 
performance.  

 
 Algorithmic Combinations: The study investigated 

the impact of different algorithmic combinations on 
the performance of the hybrid model. This analysis 
provides insights into the effectiveness of various 
machine learning algorithms in detecting anomalies in 
cloud network data. 

 
 Data Handling: The study also explored how well the 

hybrid model handles various types of data and how 
various feature selection and pre-processing 
techniques can affect its performance. 

 
 Research Pathways: The study discusses potential 

future research pathways for the application of hybrid 
models in anomaly detection and cloud network 
security. It also highlights the importance of 
understanding the hybrid model and its security 
implications. 

 
 Performance Evaluation: The study evaluates the 

hybrid model in terms of its computational resources, 
false positives, and false negatives, which can provide 
practical insights into its usefulness in real-world 
applications. 

 
Overall, the study contributed to the field of anomaly detection 
and cloud network security by proposing a new hybrid model 
and evaluating its performance against other machine learning 
algorithms. It also provided insights into the impact of different 
algorithmic combinations, data handling techniques, and 
potential research pathways. 
 
B. Practical implication of the hybrid model 

Particularly in the area of anomaly detection in cloud network 
data, the hybrid model in this study has important real-world 
applications. The model provides a sophisticated approach to 
addressing the intricacies and nuances inherent in cloud 
network security by combining the benefits of Random Forest 
(RF) and Support Vector Machine (SVM). The robustness of 
the system is improved when managing cloud network 
anomalies because of its capacity to create precise decision 
limits with the help of SVM and to capture complex 
relationships within data, which is made possible by RF's 
ensemble learning. Put practically, this means that cloud 
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settings will be able to recognize odd patterns or possible 
security concerns with greater precision.  

 
C. Conclusion and Recommendations 

This research aimed to introduce a novel hybrid model for 
detecting anomalies in cloud network data and to compare its 
performance to other machine learning models. The study used 
the UNSW-NB15 anomaly dataset and preprocessed and 
selected features for the training and testing sets. The results 
showed that the novel hybrid model performed somewhat 
poorly compared to the Random Forest models that were used 
alone, but the total time for the hybrid model was deemed 
acceptable. The study also highlighted the need for further 
research to address the class imbalance problem in the dataset. 
Overall, the study contributed to the understanding of how 
different algorithmic combinations affect the performance of a 
hybrid model in detecting anomalies in cloud network data and 
the importance of feature selection and pre-processing 
techniques in improving the performance of a model. 
 
The practical implications of the findings suggest that hybrid 
models can be used for anomaly detection in cloud network 
data, but the performance may be impacted by the selection of 
algorithms and the dataset used. The study also recommends 
future research to address the class imbalance problem in the 
dataset and to further investigate the potential of hybrid models 
in anomaly detection and cloud network security. Additionally, 
the study recommends future research to investigate the rate of 
false positives and false negatives, computational resources, 
and the ease of understanding of the hybrid model.  
 
In conclusion, this research has shown that a hybrid model of 
SVM and Random Forest can be used for anomaly 
identification in cloud network data using the UNSW-NB15 
dataset. However, the results suggested that the performance of 
the hybrid model was not as good as the Random Forest models 
alone. Further research is needed to optimize the parameters of 
the SVM and Random Forest models to improve the 
performance of the hybrid model. Despite the limitations, this 
research provides valuable insights for future research in this 
area. 
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ABSTRACT This research presents an in-depth exploration of a wide array of algorithms, techniques, methods and models 
used for forecasting asset values. Significantly, the study introduces an unprecedented approach, featuring a dedicated 
model for precise price forecasting and another for recommending optimized strategies. By assessing and contrasting the 
approaches and outcomes of asset value prediction across different fields, this paper study aims to harness the power of 
Artificial Intelligence (AI) in forecasting asset prices and tailoring investment strategies. Implemented system integrates 
the Prophet Model for precise price forecasting and employs Genetic Algorithms for investment strategy generation. 
Through a systematic evaluation of the system, we demonstrate its capacity to provide accurate asset price predictions, 
outperform traditional investment strategies and mitigate risks effectively. Empirical unit testing showcased impressive 
results such as gold model with a 4.76% MAPE and an R-squared value of 0.9795 and oil model with notable metrics such 
as a Mean Absolute Error of 6.80, and Root Mean Squared Error of 10.92. Every single user, across the board, either 
strongly agreed or agreed that the investment recommendations provided valuable insights and 92.4% perceiving system 
predictions as very accurate. It further delves into the challenges and limitations, such as the quality of data used and model 
interpretability, underscoring the imperative for robust, compliant and interpretable forecasting models. Additionally, the 
study explores future directions in the domain, advocating for the expansion of asset classes and the integration of Natural 
Language Processing (NLP) into the system. 
 
KEYWORDS: Asset price forecasting, genetic algorithm, optimum strategy recommendation, prophet.    

I. INTRODUCTION 

The landscape of investment has undergone remarkable 
transformations in recent years, propelled by technological 
advancements and the integration of data analytics. Investors 
and financial professionals are increasingly turning to 
automated investment recommendation systems to drive data-
driven decisions, manage risk effectively, and optimize 
investment strategies. These [1] systems employ a spectrum of 
techniques, from cutting-edge time series forecasting models to 
sophisticated optimization algorithms, providing real-time 
guidance in the intricate domain of finance. 
 
The precise prediction of financial asset prices holds paramount 
importance for investors, portfolio managers, and financial 
institutions. It is a linchpin in informed decision-making, risk 
mitigation, and the ultimate achievement of financial goals. 
However, [2] the inherent volatility and complexity of financial 
markets have rendered accurate predictions challenging. 
Consequently, there has been a surge in demand for automated 
systems capable of harnessing the power of data and advanced 
algorithms to furnish insights and recommendations. 
 
Historically, investment strategies have often relied on 
heuristics, technical analysis and human intuition. While these 
methods have their merits, they are susceptible to cognitive 
biases and may not fully exploit the vast amounts of data 
available in today's digital age. Automated systems offer a data-

driven and systematic approach [3] to investment decisions, 
enhancing efficiency and potentially improving returns. 
 
The primary objective of this research is to design, implement 
and evaluate an automated investment recommendation system 
that leverages state-of-the-art techniques to address the 
challenges of financial asset price prediction and investment 
strategy optimization. In this context, this paper presents a 
comprehensive study and the development of an automated 
investment recommendation system designed to forecast future 
prices of financial assets and recommend optimized investment 
strategies.  
 
II. LITERATURE REVIEW 

The evolution of investment strategies and the emergence of 
automated investment recommendation systems have been 
influenced by a rich body of research and the rapid 
development of data analytics, machine learning and 
optimization techniques. In this section, we provide a 
comprehensive review of the literature relevant to the 
components and objectives of our research: price forecasting 
and investment strategy optimization. 
 
Traversing various Machine Learning (ML) models utilized in 
forecasting of gold prices, real estate prices and automobile 
prices. With the help of a comprehensive analysis of the selected 
studies [1]-[7] for gold price prediction, [8]-[10] for real estate 
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price prediction, [10]-[13] for automobile price prediction, 
numerous valuable discoveries have brought to light.  

Table 1.  Asset price forecasting model comparison 
Model Data Sources Key Findings 

Time Series 
Analysis 

Historical price and 
trading volume data 

ARIMA and GARCH 
models are effective in 
modeling volatility 
and trends [19] 

Machine 
Learning 
Models 

Historical price, 
volume, technical 
indicators, news data 

Random Forest and 
Neural Networks 
provide accurate 
predictions [20] 

Volatility 
Models 

Historical price and 
volatility data 

GARCH models 
capture asset volatility 
dynamics [21] 

Monte Carlo 
Simulation 

Historical price data, 
random variables 

Simulations provide 
distribution of 
potential future prices 
[22] 

Option Pricing 
Models 

Asset price, strike 
price, time to 
maturity, volatility 

Black-Scholes model 
estimates option prices 
[23] 

Fundamental 
Analysis 

Financial statements, 
economic indicators 

Intrinsic value can be 
estimated based on 
fundamentals [24] 

Technical 
Analysis 

Historical price and 
volume data 

Identifies patterns and 
trends in price charts 
[25] 

Econometric 
Models 

Multiple financial 
variables 

VAR models analyze 
relationships between 
variables [26] 

News and 
Sentiment 
Analysis 

News articles, social 
media sentiment 

Market sentiment 
impacts asset prices 
[27] 

Market 
Microstructure 
Models 

Order flow data, 
trading volume 

Analyzes market 
dynamics and liquidity 
[28] 

Hybrid 
Models 

Combines various 
data sources and 
models 

Fusion of models 
enhances forecasting 
accuracy [29] 

Quantitative 
Strategies 

Real-time market 
data, trading signals 

Algorithmic trading 
strategies based on 
forecasts [30] 

 
For predicting gold prices, the reviewed research illustrated the 
productivity of various ML approaches. Fuzzy rule-based 
prediction [1] leverages news affect to forecast gold prices, 
while a Convolutional Neural Network - Long Short Term 
Memory Networks (CNN-LSTM) model [2] combines CNN 
and LSTM networks for time-series forecasting. Ensemble 
regression-based techniques [3] and tree-based prediction 
techniques [4] provide supplemental vision towards gold price 
prediction. Moreover, researchers have explored the use of 
online extreme learning machine algorithms [5], Deep 
Learning (DL) techniques [6], ensemble-based ML techniques 
[8], and [9] hybrid models comprising Autoregressive 
Integrated Moving Average (ARIMA) and Support Vector 
Machine (SVM). 

 
Concerning prediction of real estate prices, the chosen studies 
demonstrate the diversified range of ML methods used in this 
domain. The researches spotlight the importance of utilizing 
real transaction data [13], ensemble-based approaches [12] and 
regression models [14] to predict real estate prices precisely. 
Moreover, feature selection techniques [15] and exploratory 
data analysis [16] have been recruited to enhance the 
performance and interpretability of ML models in this domain. 
 

Table 2. Strategy Optimization Model Comparison 
Model Description Key Features 

Mean-
Variance 
Optimization 

Classical approach to 
portfolio optimization. 
Aims to find the 
allocation of assets that 
maximizes returns for a 
given level of risk. 

[11] Considers the 
expected return and 
variance (risk) of 
assets. 
Requires estimates of 
asset returns and 
covariances. 

Black-
Litterman 
Model 

Extension of mean-
variance optimization. 
Combines market 
equilibrium and 
investor views to create 
a more stable portfolio. 

[12] Allows the 
inclusion of 
subjective investor 
views. 
Adjusts the expected 
returns based on 
market equilibrium. 

Capital Asset 
Pricing Model 
(CAPM) 

Model that estimates 
expected returns based 
on the asset's beta, the 
risk-free rate and the 
market risk premium. 

[13] Provides a 
framework to assess 
the risk-return trade-
off. 
Simplicity in 
estimating expected 
returns. 

Factor Models Class of models that 
explains asset returns 
based on underlying 
factors (market risk, 
size, value, 
momentum, and 
others). 

[14] Captures 
systematic risk 
through various 
factors. Fama-French 
3-factor model, 
Carhart 4-factor 
model. 

Monte Carlo 
Simulation 

Numerical technique to 
assess investment 
strategies by 
simulating a large 
number of possible 
scenarios. 

[15] Incorporates 
uncertainty and 
randomness into the 
analysis. 
Useful for assessing 
downside risk and 
portfolio 
performance. 

Genetic 
Algorithms 

Optimization 
algorithms inspired by 
the process of natural 
selection (evolve 
portfolio allocations). 

[16] Suitable for 
non-convex 
optimization 
problems. 
Explore a wide 
solution space 
efficiently. 

Reinforcement 
Learning 

Optimize portfolios by 
learning from historical 
data and interactions 
with the market. 

[17] Adapts to 
changing market 
conditions.  
Can handle complex 
and dynamic 
strategies. 

Risk Parity Portfolio construction 
approach that allocates 

[18] Balances risk 
across assets. 
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equal risk to each asset, 
rather than equal 
capital. 

Can reduce the 
impact of highly 
volatile assets. 

 
While there is a substantial body of research on financial time 
series forecasting and investment strategy optimization, there 
are several areas where further exploration is warranted. The 
deliberate selection of the Prophet Model for price forecasting 
and Genetic Algorithms (GAs) for strategy optimization in our 
research is not only substantiated by a thorough examination of 
existing literature but also by a comprehensive review of 
studies specifically addressing these models in the financial 
domain. The Prophet Model's robust handling of seasonality, 
accurate trend detection, and adaptability to missing data have 
been consistently supported by notable studies such as [13] – 
[17], which specifically delve into its strengths and 
applicability in financial time series forecasting. Similarly, the 
decision to employ Genetic Algorithms is fortified by a robust 
literature foundation, exemplified by research [18] – [21], 
elucidating their global optimization capability, adaptability to 
dynamic market conditions, and proficiency in non-convex 
optimization problems relevant to portfolio optimization. 
However, it is imperative to acknowledge the apparent gap in 
the literature review concerning these specific models. While 
this comprehensive exploration of the existing studies bolsters 
the rationale for model choices, the limited availability of 
research directly addressing the Prophet Model and Genetic 
Algorithms in the financial domain underscores the novelty of 
the approach. The implications of this gap, the potential 
limitations it introduces, and avenues for future research to 
bridge this knowledge void are critical aspects, ensuring a 
nuanced understanding of the current state of research.  
 
III.  METHODOLOGY 

The study inquired about the ML techniques and 
methodologies applicable for forecasting gold prices, 
automobile prices and real estate prices. Additionally, it sought 
the optimal algorithm for predicting investment strategies. To 
address these questions, a thorough literature search was 
performed, employing systematic review techniques to gather 
information from diverse databases and sources. 

A. Systematic Review 

The Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) approach was utilized to enhance 
the disclosure and documentation of systematic reviews. “Fig. 
1” shows the systematic review process involved identifying 
relevant studies, extracting key data on machine learning 
algorithms, features used, data pre-processing techniques, 
evaluation metrics and performance results. Additionally, a 
requirement gathering questionnaire was conducted to identify 
the best solution for addressing the research question. 
Reviewed studies illustrate the possibility of ML techniques in 
predicting gold prices, prices of real estate and automobile 
prices. These techniques provide valuable insights for 
investors, financial institutions and real estate professionals to 
make informed decisions and mitigate risks. However, it is 

essential to consider the limitations and challenges associated 
with data quality, model interpretability and generalizability 
when implementing these machine learning approaches. 

 
B. Requirement Gathering 

A questionnaire was conducted to identify the optimal solution 
for addressing the research question. This involved seeking 
input from experts and stakeholders to understand the specific 
needs and objectives that an Automated Investment 
Recommendation System should fulfill. The requirement 
gathering process involved a comprehensive questionnaire and 
analysis. These addressed various aspects, including age 
categories, specific investment products, investment strategies, 
investment amounts, risk tolerance, factors for consideration, 
platforms for investment analysis, frequency of 
recommendation updates, security features, and the degree of 
automation. Findings revealed that individuals aged 15-21 are 
more receptive to the system, with a preference for fixed 
deposit schemes and a medium risk tolerance. Additionally, 
economic indicators and financial statements were highlighted 
as crucial factors, and most respondents favoured daily system 
updates with 2-factor authentication, leaning towards a semi-
automated financial advice system. 
 
C.  Technology 

1) Price Forecasting: The Prophet model was employed to 
carry out the function of forecasting future price variations with 
astonishing insight and accuracy. Owing to its robust features 
and proven effectiveness in handling financial time series data. 
The model stands out for its adeptness in capturing intricate 
seasonality patterns, a crucial factor in predicting asset prices 
impacted by daily, weekly, and yearly trends. Its inherent 
adaptability to missing data ensures reliable performance, 
addressing a common challenge in financial datasets. 
 

Figure 1. Exploratory Research Methodology 
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2) Optimized Strategy Prediction:  Inspired by natural selection 
processes, are particularly well-suited for tackling complex and 
non-convex optimization problems inherent in portfolio 
optimization. Their ability to efficiently explore a vast solution 
space, adapt to dynamic market conditions, and provide 
globally optimized solutions distinguishes them from 
traditional optimization approaches. GAs align seamlessly with 
the inherent uncertainty and randomness in financial markets, 
offering a dynamic and flexible method for constructing 
portfolios. 
 
Alternative combinations, such as relying on traditional 
optimization methods or machine learning models alone, were 
deemed less suitable for the specific demands of portfolio 
construction. The chosen integration stands out for its 
efficiency, adaptability, and explicit focus on optimization, 
offering a unique and comprehensive framework for addressing 
the intricacies of investment strategy in dynamic financial 
environments. 

D. Implementation 

1) Prophet Model:  Process “Fig. 2” begins by loading pre-
trained Prophet models for gold and oil using the pickle 
module, stored in gold_model and oil_model variables, 
capturing historical patterns. A date range is then generated 
based on specified parameters. Subsequently, a DataFrame 
named df is constructed, and the predict() method of the 
Prophet model is utilized to generate price forecasts stored in 
the forecast variable. The predictions are extracted and form a 
new DataFrame named prediction, containing forecasted dates 
and prices. The overall function returns this prediction 
DataFrame, providing a comprehensive tool for anticipating 
future trends in the gold and oil markets. 

 

1) Genetic Algorithm: Involves “Fig. 3” encoding and decoding 
investment strategies using binary strings, where the 
encoding() function converts floating-point values to binary, 
and decoding() performs the reverse. The algorithm's 
objective_function() assesses strategy fitness based on return 
and risk percentages for oil and gold investments. Crossover 

and mutation are facilitated by cross_over() and maintain 
genetic diversity. The core genetic_algorithm() orchestrates the 
optimization process, starting with a population of randomly 
generated strategies and iteratively evolving new generations 
through crossover and selection. The process continues for a set 
number of generations, ultimately yielding the optimal 
investment strategy. The optimize_investment() function acts 
as an interface, calculating return and risk percentages and 
applying the Genetic Algorithm to predict the optimal strategy 
for oil and gold investments. 
 

 

 

IV.  RESULTS & DISCUSSION 

A. Unit Testing 

Unit testing is a vital practice in software development, 
involving the verification of individual components or units to 
ensure they function as intended in isolation. Using the Prophet 
library, we enhanced the gold price forecasting model “Fig. 4”, 
achieving evaluation metrics including a Mean Absolute 
Percentage Error (MAPE) of 4.76% and an R-squared value of 
0.9795. 

Figure 3. Genetic Algorithm Working Methodology 

Figure 2. Prophet Model Working Methodology 
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Fig. 4. Gold Model Performance 

Similarly, the oil price forecasting model “Fig. 5”, developed 
with the Prophet library, exhibited initial evaluation metrics 
on historical data, including Mean Squared Error (MSE) of 
119.32, Mean Absolute Error (MAE) of 6.80, and Root Mean 
Squared Error (RMSE) of 10.92. 
 

 

Fig. 5. Oil Model Performance 

B. User Testing 

User testing is a crucial phase in evaluating the effectiveness 
and user-friendliness of this application. Feedback from users 
provides valuable insights into the application's usability, 
performance, and overall user experience. The following user 
testing results highlight key aspects gathered from the 
questionnaire: 
 
The survey “Fig. 6” reflects a diverse user base, with significant 
representation from investors and bankers, indicating that this 
system attracts a broad range of professionals involved in the 
financial sector. 

 
Fig. 6. Occupational Diversity 

Most participants “Fig. 7” engage in investment activities 
annually, suggesting that this system caters to users with varied 
levels of investment frequency, from occasional to more 
strategic, long-term approaches. 

 
Fig. 7. Engagement Patterns 

A substantial 69.2% of users “Fig. 8” found navigating through 
this system to be very easy, indicating an intuitive and user-
friendly interface that supports effortless exploration of 
different sections. 

 
Fig. 8. Navigation Experience 

The majority (78.6%) easily found the information or features 
they were looking for “Fig. 9”, demonstrating that this system 
effectively organizes and presents relevant data to meet user 
expectations. 

 
Fig. 9. Information Retrieval 

An encouraging 69.2% found the investment recommendations 
helpful “Fig. 10”, highlighting that users perceive value in the 
predictive capabilities of this system for guiding their 
investment decisions. 

 
Fig. 10. Recommendation Effectiveness 
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Nearly half of the respondents (46.2%) perceived this system 
predictions as very accurate “Fig. 11”, suggesting a positive user 
belief in the system's ability to provide reliable forecasts aligned 
with their market understanding. 

 
Fig. 11. Accuracy Perception 

The layout and design of this system received a good rating 
“Fig. 12” from 38.5% of users, indicating a generally positive 
perception of the visual aspects, although improvements may be 
considered based on the 30.8% who rated it as neutral. 

 
Fig. 12. Layout and Design Rating 

A significant majority (92.3%) found the user interface clear 
“Fig. 13” and 64.3% perceived the application as responsive 
“Fig. 14”, highlighting positive impressions regarding usability 
and performance.  

 
Fig. 13. UI Clarity 

 
Fig. 14. UI Responsiveness 

The low percentage (7.7%) reporting few minor errors “Fig. 15” 
suggests that this system has a stable and reliable performance, 
with minimal disruptions during usage. 

 
Fig. 15. Error Encounter 

Users provided constructive suggestions for additional features, 
ranging from personalized insights to interactive tutorials, 
indicating an engaged user community interested in the 
continuous improvement of this system. Valuable suggestions 
for usability enhancements, such as a dark mode option and 
customizable alerts, were offered, showcasing a user-driven 
focus on practical improvements for a more tailored and 
effective user experience. 

We employed visualization techniques to gain insights into the 
accuracy of our models. Plots were created to visualize actual 
vs. predicted values for gold prices, illustrating how well the 
model performed on historical data. Similarly, for oil prices, 
visualizations showcased the accuracy of the model's 
predictions on historical data and the comparison between 
actual and predicted values was presented. 

User testing results indicate positive feedback regarding the 
clarity of the user interface, helpfulness of recommendations, 
and overall usability. Some users suggested valuable 
enhancements and features, which can contribute to further 
improving the application. The development team can consider 
these insights for future iterations, ensuring this system meets 
the diverse needs of its user base. 

 

V.  CONCLUSIONS 

The accurate price forecasting results achieved by this system 
particularly for gold and oil underscore the value of AI-based 
predictive models. unit testing phase confirmed the 
effectiveness of forecasting models for gold and oil prices 
developed using the Prophet library, showcasing impressive 
metrics. Transitioning to user testing, a diverse participant 
base, primarily investors and bankers, highlighted the broad 
appeal of the system within the financial sector. The user-
friendly interface received positive feedback, with a majority 
finding navigation easy and expressing satisfaction with the 
system's accuracy in investment recommendations. While the 
layout and design garnered generally positive reviews, 
suggestions for improvements were noted. Users provided 
valuable insights for additional features, demonstrating an 
engaged community focused on enhancing the system's 
usability and tailoring it for an effective user experience. 
Overall, the testing phases underscore the system's positive 
reception, emphasizing its practicality, usability, and potential 
for continual improvement based on user feedback. 
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Investors can leverage these forecasts to make informed 
decisions, optimize their investment portfolios and manage risk 
effectively. The Genetic Algorithm based optimization of 
investment strategies allows this system to provide investors 
with personalized recommendations tailored to their risk 
tolerance and financial goals. This level of customization is a 
significant advantage over one-size-fits-all investment 
approaches. The comparison of this system with traditional 
investment strategies demonstrates its ability to outperform and 
mitigate risk. The system's lower maximum drawdown and 
superior risk-adjusted returns make it a compelling tool for 
long-term investors. 
 
A. Limitations & Future Directions 

It is essential to acknowledge the limitations of this system: 
• Data Quality: The system's performance is influenced 

by the quality of input data. Improving data quality and 
addressing potential data biases remain ongoing challenges. 

• Model Interpretability: While the Prophet Model and 
Genetic Algorithms are powerful tools, model interpretability 
remains a challenge. Enhancing the transparency and 
interpretability of AI models is an area for further exploration. 
 
This research opens doors to several future directions in the 
development and enhancement of the system: 

• Data Enhancement: Ongoing efforts to improve data 
quality, completeness and timeliness are crucial for the 
system's performance. Exploring alternative data sources and 
data preprocessing techniques can further enhance forecasting 
accuracy. 

• Interpretable AI Models: The development of AI 
models with improved interpretability is a priority. Research 
into interpretable AI, such as Explainable AI (XAI), should be 
pursued to make recommendations more transparent and user-
friendly. 

• Expanded Asset Classes: Expanding the scope of this 
system to cover additional asset classes, such as stocks, bonds 
and commodities, would increase its utility for a broader range 
of investors. 

• Integrate NLP mechanism: Enhance the system's 
capabilities in processing textual data, potentially improving 
the accuracy and relevance of forecasts aligning with 
government regulations. 
 
Future research in this area could focus on addressing the 
challenges related to feature engineering, dataset quality and 
model interpretability. Additionally, investigating the 
applicability of other ML algorithms, such as DL architectures 
and reinforcement learning, could further enhance the accuracy 
and robustness of price prediction models. 
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ABSTRACT Facial expression recognition has emerged as a dynamic field within computer vision and human-computer 
interaction, finding diverse applications such as animation, social robots, personalized banking, and more. Current studies 
employ transfer learning models in facial expression recognition through the application of convolutional neural networks. 
The proposed model combines data augmentation with fine-tunned transfer learning models to get a better FER model. A 
comprehensive collection of training images is crucial as input to effectively train a convolutional neural network (CNN) 
for accurate facial expression recognition. Hence, the presented research employed data augmentation to enhance the 
quantity of input images derived from a pre-existing dataset. Manually employing CNN is outdated. Therefore, fine-tuned 
transfer learning models are used in the proposed study. Activating the final 8 layers of the transfer learning model by 
freezing the whole transfer learning model is the novel methodology of the proposed model. Then we vary the values of 
dense layers and dropout layers of the activated 8 layers, which results the fine-tuning of the transfer learning model. The 
CK+, JAFFE and FER2013 datasets are used in the proposed model. Subsequently, conduct a stratified 5-fold cross-
validation to assess the model's performance on previously unseen data and avoid overfitting the proposed model. The 
method under consideration utilized transfer learning models, namely DenseNet121, DenseNet201, DenseNet169, and 
InceptionV3, along with fine-tuned transfer learning models applied to augmented datasets CK+, JAFFE and FER2013 
datasets. The outcomes indicate an achievement of 99.36% accuracy for the CK+ dataset, 95.14% for the facial recognition 
dataset (Human). 
 
KEYWORDS: Accuracy, CK+, Convolutional Neural Network (CNN), Deep Learning, Data  
Augmentation, Facial Expression Recognition (FER), Fine-tuning, pre-trained models, Transfer 
learning model    

I. INTRODUCTION 

Facial expressions serve as a powerful and universally 
understood way for humans to communicate their emotions and 
intentions [1]. A facial expression recognition (FER) system is 
a computer application designed to independently identify and 
authenticate the emotions displayed on individuals' faces in 
digital images or video frames from a video feed. This is 
achieved by comparing the facial expressions against a 
database. Facial expression recognition is a significant area of 
contemporary research with diverse applications, including 
monitoring patient conditions, improving human-computer 
interaction, enhancing security measures, influencing game 
development, strengthening video surveillance capabilities, 
automating access control systems, animating avatars, 
contributing to neuro-marketing efforts, and advancing the 
field of sociable robots.[2] 
 
Facial expression recognition poses challenges in the field of 
computer vision. because people can vary the expression of 
their same facial expressions in several situations [3]. As an 
example, people can show happy expressions differently on 

different occasions. Even in images of people with the same 
expression, the brightness, background, and pose can differ, as 
illustrated in Fig. 1. Therefore, facial expression recognition is 
a very challenging field in computer vision. As a new approach, 
we use a convolutional neural network with transfer learning 
for a small data set and then use data augmentation to make a 
vast dataset that is appropriate to get exceptional accuracy 
while fine-tuning values of the presented model. 
 
 
 
 
 
 
 
 
Fig. 1. shows that the first image is from the CK+ dataset, and 
the second is from The Facial Expression Dataset (Human). 
Even in an image of a person, the identical expression can be 
different in terms of brightness, background, and pose. The 
recognition of facial expression plays an essential role in 

 
 

Figure 1.  The two different images of a happy expression. 
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nonverbal communication between humans. Hence, there has 
been extensive research on the generation, perception, and 
understanding of facial expression. Therefore, the production, 
perception, and interpretation of facial expressions have been 
widely studied [4]. The universal facial expressions are happy, 
sad, angry, disgust, fearful, surprised, and neutral. Facial 
expression recognition is the main point in human emotion 
recognition. Darwin initiated this field of study in his book 
“The Expression of Emotions in Man and Animals” [1]. 
Recognizing expression is a task that individuals carry out 
effortlessly in their daily lives [5]. However, in the domain of 
computer vision, this is a challenging effort. There is some 
previous research that has different accuracy levels, such as 
high accuracy and low accuracy. Low accuracy is primarily 
caused by an uncontrolled environment, and some expressions, 
such as "sad" and "fear," are very similar, as illustrated in Fig 
(2).      
 
 
 
 
 
 
 
 
In the same dataset, "sad" and "fear" expressions are very 
similar, as shown in Fig. 2. The initial pair of images belongs 
to one dataset, while the subsequent pair originates from a 
different dataset. As stated above, it is not an easy task in 
computer vision. 
 
The use of small training datasets in research based on the 
classification of images leads to poor classification. A tightly 
constrained model may struggle to capture the details of a small 
training dataset, leading to underfitting. On the other hand, a 
loosely constrained model may excessively tailor itself to the 
training data, causing overfitting and ultimately resulting in 
inferior performance. Therefore, it is crucial to have a large 
dataset when training deep learning models with CNN. [7] 
 
The deep multi-layer neural network has proven to be a 
successful approach in the realm of facial expression 
recognition. This approach integrates the three stages of facial 
expression recognition, such as learning, feature selection, and 
classification, into a single step. New research attempts to 
enhance the accuracy of neural networks by training them with 
multiple layers. But this concept results in only small 
increments of accuracy. While CNNs have demonstrated 
effectiveness in learning abstract features, especially with 
deeper architectures involving numerous layers and innovative 
training techniques [6][7][8]. 
 
Building and training a convolutional neural network manually 
takes time and is out of date. Therefore, one approach is using 
transfer learning models in convolutional neural networks. The 

proposed model used transfer learning models such as 
densenet121, densenet169, densenet201, and Inception V3. 
 
The convolutional neural network employed in facial 
expression recognition demonstrates superior accuracy when 
applied to extensive datasets. However, one cannot easily find 
a dataset with a large number of images. To tackle this problem, 
we will use data augmentation [2][9]. In this approach, we use 
commonly used datasets (CK+, the facial expression (Human) 
dataset). The presented approach aims to attain an accuracy of 
99.36% on the CK+ dataset and 95.14% on the facial 
expression (Human) dataset. 
 
Facial expression recognition has improved a lot in recent 
decades due to the advancement of recognition methods. Deep 
learning, especially the improvement of convolutional neural 
networks, has played a key role in this progress. The 
effectiveness of these techniques is supported by large training 
datasets and ongoing improvements in GPU technology. To 
make small datasets more powerful, we can enlarge them 
through data augmentation. Because recent researchers used 
data augmentation in their works to increase accuracy with 
transfer learning models [2]. 
 
The central objective of this study is to formulate a CNN model 
with data augmentation and transfer learning along with CNN 
that achieves higher accuracy than previous works for the CK+ 
and the facial expression (Human) dataset which are small 
datasets. In the proposed study, we used per-trained models 
with CNN. Training the whole pre-trained model was not used 
in this study. Instead, activate some layers of the pre-trained 
model that are suitable for augmented datasets and freeze other 
layers. This will result in the most suitable model for each of 
the above datasets. We can increase accuracy by fine-tuning the 
values of each variable in the activated layers of the pre-trained 
model. Recent studies work only with data augmentation and 
pre-trained models with CNN and don’t use freezing layers or 
activate some layers of the transfer learning model. 
 
We will demonstrate how proposed transfer learning models 
with fine tuning in CNN outperform recent work on the CK+ 
and The Facial Expression Dataset (Human) datasets with 
augmentation. 
 
II. RELATED WORKS 

The current facial expression recognition research shows 
improvement due to the rise of deep learning techniques and 
especially due to the evolution of convolutional neural 
networks. The evolution of facial expression recognition 
depends on reasons such as the availability of huge datasets, the 
ability to use and add new transfer learning methods for CNN, 
and the improvement of GPU technology. 

 
Numerous recent methodologies aim to enhance accuracy in 
facial expression recognition. Aravind Ravi [10] investigated 

               
Figure 2.  The "sad" and "fear" expressions are very similar 
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the utilization of features from pre-trained CNNs for facial 
recognition in a recent study. The findings indicate that 
repurposing pre-trained models designed for object recognition 
proves effective in facial expression recognition, with the 
VGG19 model's layers achieving noteworthy accuracies of 
92.26% and 92.86% on the CK+ and JAFFE datasets, 
respectively. Additionally, earlier network features exhibit high 
accuracy on smaller datasets, a validation achieved through 10-
fold cross-validation, jack-knife validation, and leave-one-out 
methodologies, addressing the limitations of small datasets. 

 
Simone Porcu, Alessandro Floris, and Luigi Atzori delved into 
the evaluation of data augmentation techniques for facial 
expression recognition systems [11]. Their study demonstrates 
the efficacy of data augmentation techniques in improving 
accuracy. Specifically, geometric data augmentation and 
generative adversarial networks contribute to a 30% increase in 
CNN accuracy using the VGG16 architecture. Employing these 
methods successfully expands the training dataset initially 
based on the KDEF dataset and subsequently tests its efficacy 
on the CK+ and Expw datasets. 

 
Narayana Darapaneni, Rahul Choubey, and Pratik Salvi 
conducted an investigation into facial expression recognition 
and recommendations using deep neural networks with transfer 
learning. [12] The study employed the Jaffe dataset and utilized 
VGG-16 and InceptionV3 as two transfer learning models. 
Training configurations, including the last 5 layers, the last 3 
layers, the last 1 layer, and all layers, were explored with 
recognition rates of 95% and 94% achieved through cross-
validation. 

 
In another exploration, Tawsin Uddin Ahmed, Sazzad Hossain, 
Mohammad Shahadat Hossain, Raihan Ul Islam, and Karl 
Andersson delved into facial expression recognition using a 
convolutional neural network with data augmentation [13]. 
This study showcased the effectiveness of data augmentation in 
enhancing CNN accuracy. Datasets such as CK+, FER 2013, 
the MUG facial expression database, KDEF and AKDEF, and 
KinFaceW-I and II were employed, resulting in an overall CNN 
accuracy of 95.87%. 

 
Andre Teixeira Lopesa, Edilson de Aguiarb, Alberto F. De 
Souzaa, and Thiago Oliveira-Santosa explored facial 
expression recognition with convolutional neural networks, 
specifically addressing the challenges of limited data and 
training sample order [14]. Small datasets, including CK+, 
JAFFE, and BU-3DFE, were augmented to create substantial 
datasets for deep architecture-based facial expression 
recognition. The proposed method achieved an impressive 
96.76% accuracy on the CK+ dataset. 

 
The facial expression recognition model has achieved high 
accuracy by forming an ensemble of modern deep CNNs. 
Christopher Pramerdorfer and Martin Kampel conducted 

research and obtained 75.2% accuracy for the FER2013 dataset 
[15]. They used CNN architectures such as VGG16, Inception, 
and Resnet. They perform a thorough search to identify the best 
ensembles of up to 8 models in terms of FER2013 validation 
accuracy. Real-time facial expression recognition using deep 
learning research was proposed by Isha Talegaonkar and team 
[16]. They used the FER2013 dataset and made different 
changes for the number of epochs, number of layers, and layers 
of the CNN architecture to produce the model with the highest 
accuracy. As a result, they achieve a training accuracy of 
79.89% and a test accuracy of 60.12% for the FER2013 dataset. 
 
III. METHODOLOGY 

A.  Dataset 

The datasets used in this study are CK+ and the facial 
recognition dataset (human). The CK+ dataset is the Extended 
Cohn-Kanade dataset, which contains 123 different subjects 
and their 593 video sequences [17]. The images in the dataset 
are of people whose ages range from 18 to 50 and represent a 
variety of genders and heritages. The CK+ contains 327 labeled 
images with seven facial expression classes: anger, disgust, 
contempt, fear, happiness, sadness, and surprise. All images in 
the CK+ dataset are grayscale images. This dataset is widely 
used in facial expression classification. The number of images 
in each class of the dataset CK+ is shown in Table 1. The 
number of images in classes is different in the CK+ dataset, as 
shown in Table 1. Therefore, we have considered the unbalance 
of the ck+ dataset when building the proposed model with the 
CNN model. Table 1 shows the classes of the ck+ dataset and 
their number of images. 

Table 1.  Emotion and number of images in each class of ck+ dataset 

is represented 
Emotion Number of images 

Angry (An)  45  

Contempt (Co)  18  
Disgust (Di)  59  
Fear (Fe)  25  
Happy (Ha)  69  
Sadness (Sa)  28  
Surprise (Su)              83  

 

The facial recognition dataset (human) consists of 1823 images 
and represents 5 facial expressions [18]. The classes of the 
dataset are: angry_human_face, happy_human_face, 
neutral_human_face, sad_human_face, and 
surprised_human_face. The imbalance of classes cannot be seen 
in this dataset. The images are not grayscale. The whole dataset 
was divided into ratios of 80%, 10%, and 10% for training, 
testing, and validation, respectively. Table 2. shows the number 
of images in each class of facial expression (human) dataset. 

The sample images that show different classes of datasets (CK+ 
and Facial Expression (human)) are shown in Figs. 3 and 4 
below, respectively. 
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Table 2.  Classes of each dataset and their number of images in The Facial 
Expression (Human) dataset 

Expression class  Facial Expression (Human) 

dataset 

Angry_human_face 355 

Happy_human_face 410 

Neutral_human_face 367 

Sad_human_face 308 

Surprised_human_face  383  

 

B. CNN and Transfer Learning models 

A convolutional neural network (CNN) is a specialized type of 
artificial neural network designed mainly for image recognition 
within the broader realm of deep learning. CNNs are 
particularly effective at analyzing pixel data and identifying 
intricate patterns in images [19]. The process involves taking 
an image as input, recognizing important learnable weights and 
biases related to different objects in the image, and allowing the 
network to distinguish between distinct objects. The CNN 
architecture consists of four key layers: the convolutional layer, 
pooling layer, RELU-connection layer, and fully connected 
layer. This combination makes CNNs well-suited for tasks like 
facial expression recognition, making them prominent in recent 
studies exploring the complexities of facial expressions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A popular way to recognize facial expressions using CNNs is 
by using transfer learning models with pre-trained weights 
from Keras applications. These advanced models are used for 
tasks like prediction, fine-tuning, and feature extraction in 
facial expression recognition through CNNs. [26] Many Keras 
models, such as Densenet121, Densenet169, Densenet201, and 
Inceptionv3, have been recently used in studies for this 
purpose. 

Fine-tuning stands out as a popular transfer learning technique, 
particularly for achieving effective facial expression 
recognition on diverse datasets using pre-trained CNNs. [15] 
The fine-tuning process involves three key steps: 

• Adapt the pre-trained network by eliminating its final 
layer (the softmax layer) and substituting it with a new 
softmax layer customized for our particular 
model.Since pre-trained networks are designed for a 
larger number of categories, typically 1000 or more, 
adaptation is necessary for our task of classifying 
seven facial expressions. Cross-validation is 
employed to ensure the proper functioning of the 
adapted network. 

• During the training of the pre-trained CNN model 
with the dataset, a small learning rate is utilized to 
enhance the model's adaptability. 

• Certain layers of the pre-trained network are frozen, 
and new layers are introduced to align with the 
characteristics of our dataset. 

This study incorporates all these fine-tuning methods, 
employing various transfer learning models such as 
Densenet121, Densenet120, Densenet169, and Inception V3. 

 

 Angry human face Happy human face Neutral human 

face 

Sad human face Surprised human 

face 

Facial 

Expression 

(Human) 

dataset 

     
                                                    Figure 4.  The sample images that show different classes of Facial expression (Human) dataset. 

 

 

 Angry Disgust Fear Happy Sad Suprise Neutral 

CK+ 

       

Figure 3.  The sample images that show different classes of CK+ dataset. 
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Densenet is a deep learning network renowned for its efficiency 
in training, employing concise connections linking every layer. 

Figure 5.Architecture of Densenet121, Densenet169, and 
Densenet201 

In the diagram Fig.5, shows that every Densenet model 
comprises four dense layer blocks, each with varying numbers 
of layers. This discrepancy in the number of layers is the key 
distinction among densenet121, densenet169, and 
densenet201. [25] [26] 

InceptionV3 architecture: 

The inception architecture consists of several concepts. 
Factorized convolution can be seen. This checks network 
efficiency. The second concept is small convolutions. It 
replaced a large convolution with small convolutions. It leads 
to faster training. Next: asymmetric convolutions. It replaces 
3x3 convolutions by 1x3 convolutions, followed by 3x1 
convolutions. An auxiliary classifier is a small layer insert 
between layers. This is a small CNN layer. The final concept is 
grid size reduction, which is done by pooling operations. This 
will make a model more efficient and avoid computational 
costs. All these concepts combine into one model and form 
Inception V3. [27] 

C.  Data Augmentation 

Addressing computer vision tasks, such as facial expression 
recognition, with a limited training set poses a significant 
challenge for CNNs. As a result, we must investigate whether 
there is an increase in accuracy with dataset augmentation 
when using transfer learning modelsData augmentation is used 
to make an extensive training dataset suitable for facial 
expression recognition using CNN. Data augmentation 
methods were crop, flip, Gaussian blur, contrast normalization, 
additive Gaussian noise, scale, multiply, translate percent, 
shear, and rotate. The sample images of the CK+ dataset and 
the facial expression (human) dataset with the data 
augmentation showed in Fig. 6, Fig.7. 

 

 

 

Figure 6.  The sample images of CK+ dataset with the data augmentation. 

Figure 7.  The sample images of Facial expression (Human) dataset with the 
data augmentation. 

D.The Proposed FER System 

First, split the dataset as shown in the above diagram. Divide 
the whole dataset into three parts: the training dataset (70%), 
the test dataset (20%), and the validation dataset (10%) from 
the whole dataset. Take the train dataset and apply data 
augmentation. The data augmentation is done by synthesizing 
one image into 10 images in the training dataset. In this study, 
some data-augmentation methods are used. Those are flipping, 
Gaussian blur, linear contrast, multiplying the number of 
images, scaling, translating percent, and rotating. This step was 
done to increase the training dataset and avoid poor 
classification. Because the model extracts all features and other 
necessary information using a training dataset to classify test 
data correctly, Then send those images and their labels 
separately to the list. Then we have to make a CNN model using 
a transfer learning model. Transfer learning models are pre-
trained for classification tasks using an extensive number of 
images. Therefore, it is easy to change those transfer learning 
models to classify similar tasks, such as facial expressions, that 
are present in the test dataset. The first step of the procedure is 
to import the transfer learning model.  

 

 
 

Figure 8.  The diagram shows proposed FER system 
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The subsequent step involves freezing all layers of the transfer 
learning model to reduce the risk of overfitting and prevent 
training the entire network. Unfreezing the final eight layers is 
then performed to capture detailed information in the images, 
such as image edges. Following these adjustments, the model 
demonstrates a good fit and can further be fine-tuned by 
adjusting the variable values in the layers. 
 

The subsequent stage involves putting the test images, 
validation images, and label list into the CNN model and 
executing cross-validation on the test dataset. Cross-validation 
is used to estimate the new model's behavior for new data 
(images and data). In this study, it used five stratified cross-
validations. The five-stratified cross validation maintains 
proportions of classes in each fold and prevents overfitting of 
the new proposed model. 
 
The proposed FER model shows in Fig.(8)  results in a new 
model with high accuracy to classify facial expression, and 
importantly, the model originates from small datasets. 
 

E. Training 

Training involved the utilization of two datasets separately, the 
CK+ and facial expression (human) datasets, with the 
incorporation of data augmentation techniques. In this 
investigation, we introduced eight additional layers by 
maintaining the immobility of all transfer learning model layers 
[15]. These augmentations encompassed a 
GlobalAveragePooling2D layer, two dropout layers, two dense 
layers, and one batch normalization layer. Hyperparameter 
tuning was conducted by varying the dropout layer values 
within the range of 0.4 to 0.7 and experimenting with dense 
layer configurations, specifically 1024, 512, and 128. The 
training process spanned 30 epochs, employing diverse batch 
sizes of 16, 32, and 64. Ultimately, a 5-fold stratified cross-
validation methodology was employed across the CK+ and 
facial expression (human) datasets, integrating multiple 
transfer learning models to identify the most optimal models. 

IV. EXPERIMENTAL RESULTS AND  

DISCUSSION 

 A.  Implementation Details 

In the proposed method, we used densenet121, densenet210, 
densenet169, and inceptionV3 for images in CK+ and the facial 
expression (human) dataset. The image size has been set to 224 
x 224. In this proposed model, EarlyStopping, 
ModelCheckPoint, and ReduceLROnPleateau were used. [8]. 
The model monitors the accuracy.  

The proposed model trains for 30 epochs and for batch sizes 
16, 32, and 64. We used Google Colab with Python Language 
and Keras Libraries that run on Tenserflow Basement in this 
study. The Google colab environment has access to the 
NVIDIA Tesla K80. 

B.  Evaluation metrics 

Accuracy, Precision and F1 score are the evaluation metrics of 
this study.  

 

Accuracy =   

�� + ���


�� + �� + �� + ����                

 
 
Precision = �� 
�� + ����  

  
Sensitivity =  �� 
�� + ����  

 
TP=true positive, TN=true negative, FP=false positive, 
FN=false negative 
 
Accuracy shows how often a facial expression classification 
model is correct overall. Precision shows how often a proposed 
facial expression model is correct when predicting the target 
class. Recall shows whether the proposed facial expression 
model can find all images of targeted facial expressions. 
[23][24] 
 

C.  Experimental setup 

Cross-validation is used in this proposed FER model. We need 
to measure how the proposed model behaves in the presence of 
unseen images. Stratified 5-fold cross-validation was used in 
this study. This cross-validation type is an extension technique 
used for classification problems. Mainly, this is because the 
CK+ and the facial expression (human) datasets are 
imbalanced. Therefore, we need to keep the same proportion of 
classes throughout the k-folds as the original dataset. 
 

D. Testing Results 

The present investigation assesses the performance using the 
facial expression (human) and CK+ datasets, which are 
commonly employed in facial emotion recognition (FER) 
research due to their compact size. A comparative analysis is 
conducted with recent studies, demonstrating the contemporary 
nature of our approach and its commendable accuracy on 
datasets like CK+ and the facial expression (human) datasets. 
Our methodology leverages popular transfer learning models, 
including Densenet121, Densenet201, Densenet169, and 
Inception V3, which currently dominate the landscape of FER 
systems. Notably, existing studies often neglect the combined 
application of data augmentation, transfer learning, and fine-
tuning for achieving optimal accuracy. The subsequent results 
provide a detailed breakdown of the accuracy achieved by our 
proposed model, separately employing Densenet121, 
Densenet169, Densenet201, and Inception V3 on the CK+ and 
the facial expression (human) datasets. 

Table 3.   Final Maximum accuracies gained by proposed model for ck+ 
dataset 

Model  Batch 

size  

Dense 

layers 

Drop

out 

value  

Acc

urac

y  

Preci

sion  

F1 

Score  

Densenet

121  

32  1024, 

128 

0.4  0.99

37  

0.993

7  

0.993

7  
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Densenet

169  

32  1024, 

128 

0.4  0.99

05  

0.991

0  

0.990

6  

Densenet

201  

32  1024, 

128 

0.5  0.98

42  

0.985

5  

0.984

3  

InceptioV

3  

32  1024, 

128 

0.4  0.96

45  

0.967

5  

0.933

6  

 
 

TABLE 4.  Final Maximum accuracies gained by proposed model for Facial 
Expression (Human) dataset 

 

According to the tables 3,4 , the proposed model attained a peak 
accuracy of 99.37% for CK+ and 95.14% for the facial 
expression (human) dataset. The best accuracies of the above 
models are shown using the graph shows in Fig.9. 

Table 5 shows how the proposed model achieves the best results 
with respect to previous work. Most effective accuracy can be 
achieved by combining data augmentation and transfer learning 
models with new layers along CNN. 

 
 

Figure 9.  The graph shows maximum accuracy with each model 

 
 

 
TABLE 5. comparison of proposed method and previous models’ accuracy 

for CK+, the facial expression (human) datasets. 

 

 

V. CONCLUSION 

In this research, a contemporary approach to facial expression 
recognition was introduced, employing a CNN architecture 
coupled with a transfer learning model and data augmentation. 
Noteworthy pre-trained models, including DenseNet121, 
DenseNet201, DenseNet169, and InceptionV3, commonly 
utilized in image classification, were incorporated. The study 
demonstrates the enhanced efficiency of classification achieved 
through the fine-tuning of transfer learning models. 
 
Despite the limitations of small datasets such as CK+ and the 
facial expression (human) dataset, known for their modest size 
and limited responsiveness, our methodology leveraged data 
augmentation to augment the dataset size. 
 
The core idea of transfer learning is simple. Utilize a model 
trained on a large dataset and apply its knowledge to a smaller 
dataset. In facial expression recognition with a CNN, we freeze 
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Model  Batch 

size  

Dense 

Layers 

Drop

out 

Value  

Accura

cy  

Precisi

on  

F1 

Score  

Densen

et121  

32  1024, 

512 

0.5 0.9274 0.9283 0.9277 

Densen

et201  

32  1024, 

512 

0.5  0.9514 0.9517 0.9514 

Densen

et169  

32  1024, 

128 

0.4  0.9139 0.9169 0.9142 

Inceptio

V3  

32  1024, 

128 

0.4  0.8879 0.8801 0.8840 
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the initial convolutional layers and only fine-tune the last 8 
layers responsible for prediction. 
The reasoning behind this approach lies in the fact that 
convolutional layers capture general, fundamental features 
applicable across diverse images, like edges, patterns, and 
gradients. Subsequent layers then specialize in recognizing 
specific features within an image, such as eyes or noses. By 
applying transfer learning models in conjunction with fine-
tuning, the study successfully addressed the challenges posed 
by small datasets. As evident in the aforementioned results, this 
approach emerges as the optimal solution for facial expression 
recognition systems employing convolutional neural networks 
on small datasets, showcasing the synergistic impact of data 
augmentation, transfer learning, and fine-tuning. 
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ABSTRACT: In the rapidly evolving field of healthcare, Artificial Intelligence (AI) and pattern recognition play a key 
role in enhancing disease diagnosis and prediction. As the patient population increases, the digitalization of medical records 
has become essential, therefore electronic medical records were developed. This stored Electronic Medical Records (EMR) 
data can be used to predict possible diseases based on the symptoms stored in the system. This study delves into the 
integration of AI methodologies within EMR systems, providing a comprehensive review of current techniques that have 
been used in health prediction and monitoring using EMR data. In this paper, different AI-driven approaches were 
examined and compared, including Deep Learning (DL), Machine Learning (ML), and Rule-Based Methods. This paper 
reveals the potential of these techniques in accurately diagnosing diseases, additionally, it discusses challenges and future 
directions, emphasizing the need for innovative solutions to optimize EMR systems in the context of AI and pattern 
recognition. Several instances where AI models, such as the application of Support Vector Machine (SVM) models, 
achieved predictive accuracies of 86.2% and 97.33% in different cancer types, and ML models diagnosing Diabetic 
Retinopathy with a 92% accuracy rate were observed. Variations in the effectiveness of these technologies across different 
diseases were also observed, such that a technique that has high accuracy in one disease may have lower accuracy in a 
different disease. This paper aims to contribute to the growing body of knowledge in AI applications in healthcare, offering 
insights into the development of more efficient, accurate, and predictive healthcare models.  
 
KEYWORDS: Healthcare, Deep learning, Electronic Medical Records, Rule-based method, Disease 
diagnosis, Machine learning.   

I. INTRODUCTION 

One of the most critical responsibilities of medical institutions 
is managing patient data, and a patient file is an essential source 
of data since it enables the development of comprehensive 
healthcare strategies. It had been common practice for a long 
time to keep records on paper where medical offices, hospitals, 
and clinics frequently gathered files and kept patient history 
using a paper record system. However, paper medical records 
have a lot of drawbacks such as insufficient storage space, 
insufficient backups, inconsistency in the layout, and unclear 
audit trails. Due to technological advancements, electronic 
medical records were introduced to store patient data on 
computers or smart devices and overcome paper records’ 
drawbacks.  
 
Electronic Medical Records (EMR) are digitalized versions of 
paper charts in clinics and hospitals. Clinicians and doctors 
primarily use these EMRs to diagnose and treat patients and 
record information by and for the physicians in the hospital. 
The use of EMRs has become increasingly prevalent in 

healthcare, with potential benefits such as improved patient 
care and reduced medical errors [5]. It contains a patient's 
medical history, diagnoses, prescriptions, treatment schedules, 
vaccination dates, and lab and test results. These are stored in 
databases that enable doctors or clinicians to access patient 
information quickly, track vaccinations, follow patient health 
performance, and make informed judgments with proper 
understanding and confidence for the most complex multi-axial 
diseases, heart diseases, and cancers [4].  
 
By computerizing patient information, there is also a 
significant change in how patient data are arranged and made 
available for applications that weren't previously possible with 
paper records. Thus, it shows that the main objective of an 
EMR is keeping an eye on the patient while improving 
healthcare quality. It is important to understand the patient's 
unique perspective and experiences in the diagnosis and 
treatment of disease, using EMR has been shown to improve 
patient outcomes and satisfaction, as well as enhance the 
physician-patient relationship [2]. Even though EMR provides 
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users and physicians with several advantages, several 
difficulties are connected to their implementation, such as 
computer downtime, computer professionals' limitations, a lack 
of user communication, security risks of confidentiality-
leakage, etc which should be considered [6]. An accurate and 
timely diagnosis is the foundation of any successful treatment. 
Access to longitudinal data from a patient's EMR might be a 
valuable clinical resource that could be utilized to forecast 
future events or diagnoses [1]. A patient's status is thoroughly 
described in an EMR, and applying data-driven technologies to 
an EMR enables us to accurately predict and diagnose diseases. 
This can be made possible by making the raw EMR data into a 
machine learning representation or turning the data into 
relevant data that can be processed algorithmically. The 
integration of AI technologies with EMR systems represents a 
groundbreaking development in this context. AI's ability to 
process large datasets and uncover patterns offers unparalleled 
opportunities for improving disease diagnosis, treatment 
planning, and patient monitoring.  
 
There are different types of data-driven techniques used to 
accomplish prediction and diagnosis systems that medical 
professionals can employ to effectively forecast illnesses and 
enhance the health of their patients. This review aims to find 
the most accurate methods for diagnosing and predicting 
diseases by describing and comparing various methods and 
techniques used for health prediction and monitoring using 
EMR.  
 
This study discusses numerous disease diagnosis and 
prediction methods using electronic records, highlighting their 
benefits and drawbacks. It also discusses current trends and 
potential future developments and makes a comparative 
comparison of the various methods.  
 
The literature review of this paper explores the significance of 
EMR data in monitoring patient health and advancing data-
driven decision-making. It delves into the growing interest in 
employing computer-assisted methods for disease diagnostics 
based on Electronic Health Record (HER) data, categorizing 
these methods into distinct approaches. Machine Learning 
(ML) methods, encompassing Bayesian, Support Vector 
Machine (SVM), and decision tree techniques, are discussed, 
along with the challenges of integrating raw EHR data into ML 
models due to complexity and limited healthcare data. 
Bayesian Networks are highlighted for their use in probabilistic 
medical ontology reasoning, aiding in disease diagnosis and 
prediction. Decision Trees are emphasized for their 
effectiveness in the early identification of diseases like Diabetic 
Retinopathy and asthma. Additionally, rule-based heuristic 
techniques are explored for diagnosing colorectal cancer and 
lupus. Finally, Deep Learning methods, including 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Deep Belief Networks (DBN), and 
Autoencoders (AE). Using these findings, it is aimed to present 

a comprehensive overview of the existing predicting systems 
implemented using the above-mentioned techniques and EMR 
data. 
 
The paper is structured into five sections. Section 2 discusses 
the current research on methods for disease diagnosis. Section 
3 is the Methodology. Section 4 contains the discussion. 
Finally, Section 5 presents the conclusion of the review.  
 
 

II. DISEASE DIAGNOSIS USING DATA-DRIVEN  
MODELS 

EMR data is a critical resource in modern healthcare, 
providing a dynamic method to monitor patient health and 
improve decision-making using data-driven solutions. Unlike 
traditional clinical tests and biological investigations, the 
fundamental goal of EMR data is to track a patient's health over 
time in a methodical manner. This large set of patient data has 
paved the way for the creation of prediction models by 
implementing AI models such as Machine Learning (ML), 
Deep Learning (DL), and Rule-Based Methods, which have 
revolutionized disease prediction and diagnosis processes. 

 

This paper discusses various electronic medical record-
based methods for diagnosing diseases automatically. 
Depending on their technique, models have been grouped into 
different approaches to diagnosing diseases using EMR data.  
 

A. Machine Learning (ML) Methods  

 

Health database systems based on electronic medical records 
(EMR) are most often created using machine learning methods 
for individuals who have had health examinations [7]. Machine 
learning methods can be categorized into different approaches, 
including Bayesian, SVM, and decision tree methods. Each of 
these approaches represents a distinct category within the field 
of machine learning [34]. 
 
Many research studies have used EHR data for a predictive 
model, which involves constructing a statistical model to 
predict a clinical outcome using machine learning. However, it 
is difficult to directly integrate raw EHR data into ML models 

Figure 01. Breakdown of the techniques used in this review to 
diagnose diseases. 
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for predictive models due to the complexity of EHR data [8]. 
Because a lack of data prevents machine learning from solving 
many healthcare issues.  
 

1) Support Vector Machine (SVM)  

For supervised classification, experts often use Support Vector 
Machines (SVM). SVM is based on labeled data, and Vapnik 
invented SVM [45]. A training dataset is used to find data from 
the input that has a structure like the output data when both the 
input and the output have already been supplied. 
 
Getting a cancer diagnosis is crucial for prospective patients 
since early tumour identification and therapy can improve 
survival. In [9], a cancer diagnosis was performed using the 
SVM model using medical information retrieved straight from 
the EHR. As part of the proposed approach, SVM models for 
cancer classification were trained using medical records 
extracted from Electronic Health Records (EHRs). These SVM 
models Based on the medical data that was analysed, played a 
crucial part in the cancer categorization procedure. After being 
trained on 400 pieces of data for each cancer and employing 
100 pieces of health information for each cancer, the algorithm 
has shown a predictive accuracy of 86.2% for ten different 
forms of cancer and 97.33% for three different types of cancer.  
 
An SVM-based technique was used [10] for significant cohort 
research to diagnose contralateral breast cancer. Characteristics 
based on pathology reports for every area of breast cancer and 
narrative text in progress notes were used to derive features, 
Zeng et al. [10] designed and put into practice a novel 
methodology. The suggested strategy for identifying 
contralateral occurrences in the notes uses medical ideas and 
how they are combined. SVM and derived characteristics are 
used to detect contralateral cancers. During the validation 
process, the area under the curve (AUC) for the model was 
determined to be 0.93, indicating its high accuracy in predicting 
outcomes. In the test set, the AUC was slightly lower at 0.89, 
indicating a slightly reduced but still reliable performance. This 
strategy of feature development is advantageous due to its 
simplicity and can be applied to different occurrences of breast 
cancer as well as to identify various other diseases.  
 
To identify Rheumatoid Arthritis (RA) patients, the Support 
Vector Machine (SVM) technique can be employed. This 
technique utilizes a set of naïve and expert-defined Electronic 
Health Record (EHR) characteristics for the identification 
process [12]. This method uses Natural language processing 
(NLP) concepts, pharmaceutical exposures, and billing codes. 
The SVM methodology was trained using both expert-defined 
and naive data. The accuracy and recall scores were 0.94 and 
0.87, respectively, as opposed to 0.75 and 0.51 for deterministic 
approaches. In this study, a dataset of 10,000 patients was 
employed. The test findings divided the patients into three 
groups: potential RA, definite RA, and not RA.  
 

2) Bayesian Network (BN)  

A probabilistic graphical framework called a Bayesian network 
is utilized to represent a group of variables and their conditional 

interactions. This graphical model employs a directed acyclic 
graph (DAG) to illustrate the relationships among the variables 
and their dependencies. Naive Bayes (NB) and Bayesian 
Networks (BN) are both probabilistic algorithms that perform 
effectively with various characteristics [14].  
 
Building Clinical Bayesian Networks (CBN) for probabilistic 
medical ontologies reasoning is described in [13] to directly 
learn the entire ontology and high-quality Bayesian topology 
from EMRs. More than 10,000 patient records analysed for 
medical entity connections have used the K2 greedy method 
and Odds Ratio (OR value) computation to create a Bayesian 
topology automatically. The study demonstrates that medical 
information can generate high-quality health topology and 
ontology directly and automatically. A clinical Bayesian 
network has been developed using the study's probability 
distribution between illness and other parameters. With 1712 
test samples, an accuracy of 64.83% was produced by the Naïve 
Bayesian network, while the Basic Bayesian network produced 
68.45%.  
 
In a study by Sakai et al. [15], they evaluated the diagnostic 
performance of a Bayesian network in comparison to the NB 
model, an artificial neural network (ANN), and a logistic 
regression model to identify instances of appendicitis. 169 
people who were thought to have acute appendicitis were 
included in the dataset for the study. The performance of the 
proposed model was assessed using logistic regression and 
neural network metrics. Compared to other diagnostic models 
examined in this research, this model had the lowest error rate 
and produced the most trustworthy findings, detecting that 
50.9% of patients (86 out of 169) had appendicitis.  
 
The Naïve Bayes method was employed in Al-Aidaroos et al. 
[16] review of medical data mining to classify medical data and 
diagnoses such as primary tumours, hepatic issues, and breast 
or lung cancer. Using 15 datasets, the proposed NB strategy 
was empirically compared with five other approaches to show 
its superiority. The findings indicated that NB performed better 
than others regarding medical categorization. Deep learning 
ideas can produce superior segmentation results with the 
proposed approach. The report states that future research will 
combine NB and different methodologies.  
 
Kazmierska and Malicki researched the Bayesian classifier, 
which is used to assess whether cancer is progressing or 
relapsing [17]. This study analysed data from 142 individuals 
who had radiation therapy for brain tumours between 2000 and 
2005. For training, 96 binary attributes were selected. As a 
result of the proposed model, the likelihood of having a cancer 
relapse has been determined as well as the likelihood of not 
having one. The proposed method received scores of 0.84, 0.87, 
and 0.80 for accuracy, specificity, and sensitivity, respectively.  
 

3) Decision Tree  

EHR data can accelerate and simplify the early identification 
of Diabetic Retinopathy (DR). Five machine-learning 
techniques are used in [18] to identify diabetic retinopathy 
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using electronic health record data. Records from 301 Chinese 
hospitals were compiled into a sizable retinal dataset. To 
increase the accuracy of DR illness diagnosis, preprocessing 
techniques such as label binarization, value normalization, and 
standard acceleration are carried out. According to the 
experimental findings, the machine learning model's Random 
Forest (RF) can achieve an accuracy level of 92% while 
performing well. Due to its low cost, low threshold, and 
excellent diagnosis accuracy, the suggested approach has an 
advantage over current DR diagnostic methods.  
 
The primary objective of the study conducted by Lungu et al. 
[19] was to investigate whether machine learning techniques 
could enhance the diagnostic precision of Magnetic Resonance 
Imaging (MRI) in detecting pulmonary hypertension (PH). 
This was accomplished by employing computational modelling 
approaches and image-based metrics. MRI as well as the Right 
Heart Catheterization (RHC) were used to identify PH using a 
decision tree method [19]. Seventy-two individuals with 
potential PH underwent MRI and RHC, and 57 of these patients 
were found to have the condition, while 15 samples were 
determined to be PH-free. As a result of the proposed 
algorithm, 92% of the PH cases were correctly identified, while 
4% were misclassified. If the findings of this study are as 
anticipated, RHC may not be required when PH is suspected.  
 
In [20], the decision tree is used in the first phase to diagnose 
asthma, and the fuzzy system is utilized in the second phase to 
assess the level of asthma management. Dry cough, sore throat, 
sneezing, and other symptoms have been used to diagnose 
asthma, whereas breathlessness and other daytime symptoms 
have been used to measure the control level. In this study, the 
information was gathered through the patients' responses to 
questionnaires. Diagnoses of asthmatic patients were made 
using a decision tree classifier, which had accuracy and kappa 
coefficients of 0.90 and 0.783, respectively.  
 

B. Rule-Based Method  

In [22], the diagnosis of colorectal cancer was made using a 
rule-based heuristic technique. Machine learning and rule-
based methods' effectiveness was evaluated for each phase. The 
algorithm identified concepts at the document level with an F-
measure of 0.996 as well as detected cases at the patient level 
with 0.93 for the F-measure using the manually examined data 
set of 300 potential Colorectal cancer patients. In the work by 
Breischneider et al. [23], in this study, rule-based grammar was 
used to obtain textual information from records of patients with 
mamma carcinoma. Based on recovered textual fragments, 
seven essential criteria were listed to construct the therapeutic 
suggestion. The mammography use case was used to assess the 
proposed system. With an accuracy of 0.69, a textual feature 
extraction approach based on rule-based decision support, 
information extraction, and semantic modelling was employed 
to determine the lymph node status. 
 
In an EHR dataset with 400 records, Jorge et al. [24] used rule-
based approaches to identify lupus patients. Natural language 
processing was used to extract the narrative and codified data 

from the training set of data (NLP). Based on penalized logistic 
regression, the author classified systemic lupus erythematosus 
(SLE) as either definite or probable. The machine learning code 
utilized in this work for definite SLE showed a 90% positive 
predictive value, with a specificity of 97%. According to the 
best rule-based method (ICD-9 code), the specificity and 
sensitivity were respectively 86% and 84 % and 60 % and 69 % 
for definite and definite/probable SLE.  
 

C. Deep Learning Methods  

Deep neural networks, including autoencoders (AE), 
Convolutional Neural Networks (CNN), Deep Belief Networks 
(DBN), Recurrent Neural Networks (RNN), and other similar 
architectures, are considered the most effective machine 
learning techniques in the biomedical sector [25]. These 
networks form the foundation of deep learning and have shown 
remarkable effectiveness in various biomedical applications. 
Various deep learning methods used on electronic medical 
records are examined in this review to apply them to clinical 
tasks. Their benefits are discussed in practice and potential 
future applications. 
 

1) Convolutional Neural Network (CNN)  

A method for unsupervised deep feature learning that Miotto et 
al. introduced in [21]. Using clinical notes as the input, they 
drove patient representation in their predictive modelling 
technique. By identifying hierarchical regularities and 
relationships in clinical notes, 700,000 individuals from the 
Mount Sinai dataset were used. The study encompassed a broad 
range of clinical areas and chronological periods, involving a 
total of 76,214 test individuals, representing 78 distinct 
diseases. The study's findings surpassed approaches that relied 
on a representation derived from basic medical information, 
where accurate and F-score forecasts improved by 92.9% and 
18.1%, respectively. When produced patient representations 
are included in DL approaches, clinical prediction can be 
improved. This study can use the laboratory findings to 
improve the quality of its model.  
 
Multiple illnesses have been evaluated using the disease 
prediction model built on EMRs [26]. The Convolutional 
Neural Network (CNN) has been used to characterize the 
suggested strategy for multiple illness prediction. This 
approach was tested on 4298 patients with a brain infection, 
coronary heart disease, and pulmonary infection. In a dataset 
for cerebral infections, the CNN algorithm, the accuracy was 
96.5% and the F1-measure score was 96.6%.  
 

2) Recurrent Neural Network (RNN)  

Recurrent Neural Networks (RNN) were specifically designed 
to process sequential inputs, such as language data. The present 
state of an RNN implicitly incorporates knowledge about the 
whole history of the series since RNNs process, a series of 
inputs that transmits the concealed value of every input unit to 
the next input unit, one item at a time. Doctor AI [27], which 
was over eight years, performed over 260K time-stamped 
analyses on individuals' electronic health records 
longitudinally, which is one RNN-inspiring technique. Doctor 



                                                                                                            

54 
 

AI surpassed multiple baselines and scored 79.58% on a sizable 
real-world EHR dataset.  
 
Wu et al. [28] presented a novel approach for categorizing 
paediatric asthma by utilizing event sequences and their 
corresponding characteristics. The findings of this study show 
that including a timestamp in an RNN model enhances the 
categorization of individuals without asthma rather than those 
who have it.  
 

3) Deep Belief Network (DBN)  

A Deep Belief Network (DBN) has been used to diagnose 
Parkinson's disease (PD) using speech sounds collected from 
the UCI repository [30]. A range of healthy and sick voices was 
used to train the suggested approach, using DBN as a data 
source, and the features were extracted. According to the 
proposed method, the PD consists of one output layer and two 
stacked limited Boltzmann machines. Parkinson's disease was 
diagnosed with 94% accuracy using the recommended 
approach.  
 
DBN has been used [31] to diagnose attention deficit 
hyperactivity disorder (ADHD), which is one of the most 
common diseases. The network was built and trained using a 
greedy methodology according to the recommended strategy. 
The Global Competitions ADHD-200 has provided the two 
training and testing datasets. This study has used samples from 
the Neuroimaging (NI) and New York University (NYU) 
databases for training and testing, respectively. These findings 
show that they attain cutting-edge accuracy of 0.6368 on the 
NYU dataset and 0.6983 on the NI dataset.  
 

4) Auto Encoders (AE)  

In a study, researchers employed auto-encoders to forecast a 
particular group of diagnoses [29]. For the detection and 
classification of softmax, stacked autoencoder, and cervical 
cancer classification algorithms have been utilized [32]. To 
train and test the approach, the UCI dataset with 30 
characteristics, four targets, and 668 samples was used. A 
training set made up 70% of the dataset, while a test set made 
up 30%. Four target variables were applied to the suggested 
model, and the efficacy of its categorization was evaluated. 
This comparison produced a 0.978 accurate classification rate. 
Due to the dimensionality reduction of the samples, this 
model's training takes far too much time. In the future, 
advanced methods could be used to reduce the training time of 
the model. Hwang et al. [33] examined the efficacy of missing 
value prediction, conventional networks, and generative 
adversarial networks (GANs) methods combined for illness 
prediction [33]. With a specificity of 0.99, along with a 
sensitivity of 0.95, also with an accuracy of 0.98, the stacked 
autoencoder (missing value forecasting technique) and 
auxiliary classifier GANs (AC-GANs: illness prediction) have 
shown excellent results. In this work, AE fills in the gaps left 
by the GAN generic model. The use of GAN to fill in the 
missing data is one of this work's future directions. 
 
 

 
III.  METHODOLOGY 

 
An efficient and effective way to obtain requirements is 
through document analysis, which involves reviewing current 
system documentation and acquiring data. In the study, a 
systematic analysis of 40 papers was conducted, and 31 of them 
were selected based on stringent criteria to review in this paper. 
Research articles were used from Google Scholar and other 
research archives articles on EMR-based disease diagnosis 
based on AI methods such as ML, Rule-based, and DL 
methods. The selection process involved multiple stages, 
including title and abstract screening, full-text reviews, and a 
backward and forward search to capture additional relevant 
works. Selected literature used specific keywords and phrases, 
and combinations of these terms. Keywords related to the topic 
were searched to find existing research articles.  
 
Several research articles on EMR systems and methods used 
for predicting systems were reviewed and analyzed. The 
research article categorizes the methods used to track and 
predict health into three categories: Different approaches were 
employed in the study, including the utilization of Rule-Based 
Methods, Machine Learning (ML) Methods, and Deep 
Learning (DL) Methods. These categories were chosen based 
on the predominant analytical techniques used in the articles 
and provided a structured way to compare the effectiveness and 
accuracy of different methods. 
 
To simplify data analysis, the literature review was 
summarized into tables. Tables provide an overview of 
methods used, the disease addressed in the paper, performance 
measures such as accuracy and F-measures (a measure of test 
accuracy), and the paper's objectives. Comparing the 
effectiveness and accuracy of different methods can be done 
using the tables.  
 
Support Vector Machines (SVMs) are strong technology that 
includes both nonlinear and linear regression approaches, 
making them essential to data mining processes. SVMs can 
conduct multiclass and binary classification, making them 
useful for data prediction and classification, including in the 
field of health research. SVMs are frequently used by 
researchers for supervised classification, particularly in disease 
detection and prediction. 
 
For instance, SVM methods have been used to identify 
different types of diseases, such as breast cancer and 
rheumatoid arthritis, with high accuracy. Zhang et al. [9] 
achieved 97.33% accuracy in cancer classification from 
Electronic Health Records (EHRs) using SVM, while Zeng et 
al. [10] conducted a validation study on detecting contralateral 
breast cancer, achieving a high area under the ROC curve 
(AUC) of 93% when utilizing extracted features in combination 
with pathology reports. Additionally, SVMs have been 
employed in the identification of rheumatoid arthritis (RA) 
phenotypes, achieving an F-Measure score of 88.6% in a Naïve 
EHR with a sample size of 376 patients [12]. 
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Table 6. The Summary of the SVM Methods 

Methods Focused 

disease 

Performance 

Measures 

Dataset Objective 

 
SVM- RBF 
 
[9] 

 
Cancer 

 
Accuracy- 97.33% 

 
Employed 100 pieces of health 
information for each cancer and trained 
on 400 pieces of data for each cancer. 

 
Using SVMs to classify cancer from 
EHRs. 

 
SVM [10] 

 
Breast Cancer 

 
Testing- 89% 
 
 
 
AUC
 Validatio
n- 93% 

 
A total of 1063 women with breast 
cancer. 

 
Analyzing pathology reports and 
extracted features to identify 
contralateral 1 breast cancer. 

 
SVM 

 
Rheumatoid 
Arthritis 

 
Precision- 96.8% 

 
In total, 376 patients (185 with RA and 
191, not RA). 

 
SVM-based phenotyping of RA in the 
Naïve EHR. 

[12]  F-Measure- 88.6%   

  Recall- 87%   

  AUC-96.6%   

The below graph shows the average performance based on the 
performance measure obtained for the different diseases based 
on the SVM methods used. 
 

 
Figure 02. Comparison of the SVM Method's average performance 

on different diseases 
 
Bayesian approaches, such as Naive Bayes (NB) and Bayesian 
Networks (BN), are probabilistic algorithms that use multiple 
features elegantly. By utilizing proven biomarker operating 
characteristics, Bayesian clustering can accommodate patients 
with varied data availability. The advantage of Bayesian joint 
modeling is that it incorporates phenotypic uncertainty into 
future association analyses, producing correct uncertainty 
estimates. When compared to Bayesian networks, NB 
classifiers do not require dependency networks and are better 
at handling high-dimensional features. This research looks at 

four articles that utilize Bayesian approaches to predict diseases 
like cancer, appendicitis, hepatitis, and brain tumors. 
 
Shen et al. [13] tested the accuracy of Naive Bayes and 
Bayesian Networks in predicting cancer and achieved 64.83% 
and 64.83% accuracy, respectively. Sakai et al. [15] used the 
Bayesian network to predict the diagnosis of acute appendicitis. 
Aidaroos et al. [16] classified cancer, hepatitis, and  
 
liver disorders using NB with an accuracy of 97.43%. Bayesian 
networks were also used to optimize treatment decisions for a 
brain tumor with 84% accuracy. The table below lists a few 
Bayesian method-based systems, and research articles are used 
to note how accurate the results were when used to predict 
diseases. 
 
Bayesian statistical models have been utilized when there are 
gaps in the information provided by local data but there are 
additional sources of information that can help close the gaps. 
There are further advantages to Bayesian modeling since it 
gives a reasonable framework for incorporating new data as it 
becomes available and helps practitioners to rapidly estimate 
future illness scenarios. The table below lists a few Bayesian 
method-based systems, and research articles are used to note 
how accurate the results were when using Bayesian method-
based to predict diseases. 
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Table 7. The Summary of the Bayesian Methods 
 

Methods 

 

Focused Disease(s) 

 

Performance Measures 

 

Dataset 

 

Objective 

 
NB, BN [13] 

 
cancer 

 
NB Accuracy- 64.83% 
 
BN Accuracy- 68.45% 

 
Records of 10,000 identified 
patients. 

 
An Automatic Bayesian 
topology generation using the 
K2 greedy method and odds 
ratios (OR values). 

 
Bayesian 
Network 
 
[15] 

 
Appendicitis 

 
- 

 
A database contains 169 
people who may have acute 
appendicitis. 

 
An algorithm for predicting 
acute appendicitis using 
Bayesian networks. 

 
NB, LR, 
DT, and NN 
 
   [16] 

 
Multiple diseases, 
including cancer, 
hepatitis, and liver 
disorders 

 
Accuracy- 97.43% 
 
AUC- 99% 

 
Various illnesses are 
illustrated in 15 datasets from 
the UCI library. 

 
LR, NB, NN, and DT 
classification of medical data. 

 
Bayesian 
Network 
 
     [17] 

 
Brain Tumor 

The accuracy rate is 84% 
The sensitivity is 80% The 
specificity is 87% 

 
142 patients with brain 
tumors. 

 
Optimization of treatment 
decisions using the Naïve 
Bayesian Classifier. 

 
The graph illustrates the average performance of different 
diseases based on the use of Bayesian methods for diagnosis. 
 

 
Figure 03. Comparison of the Bayesian Method's average 

performance on different diseases 
 

Using decision trees was another method used for predicting 
diseases in research articles. A decision tree aids in creating a 
fair picture of the rewards and hazards related to each potential 
result. When contemplating EHRs, where uncertainty is 
prevalent, decision trees are highly helpful because they are 
especially beneficial when the results are unknown. A decision 
tree is an effective tool for decision-making. It offers a useful 

framework within which to consider options and investigate 
what might result from each.  
 
Decision trees are used to categorize records, which are useful 
for challenges involving association and regression. By using a 
decision tree, advantages and disadvantages can be quickly 
visualized and identified. The diagnosis system for diabetic 
retinopathy developed by Sun and Zhang [18] achieved 86.82% 
accuracy. Based on MRI images, Lung et al. [19] were able to 
diagnose pulmonary hypertension with 92% accuracy using a 
decision tree. Using a decision tree and fuzzy system, asthma 
diagnosis and control levels were  
determined [20]. 
 
The reliability and effectiveness of decision trees in medical 
decision-making are supported by reputable sources, including 
research articles and academic publications. Decision trees 
provide high classification accuracy and are a dependable and 
effective means of making judgments due to their plain 
representation of the information gathered. They have been 
widely used in a variety of medical decision-making scenarios, 
including classification and diagnosis. The fundamental 
properties of decision trees and their effective applications in 
medicine have been emphasized in the literature, highlighting 
their potential for future use in medical research and practice. 
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Table 8. The Summary of the Decision Tree Methods 

 

Methods 

 

Focused 

Disease(s) 

 

Performance 

Measures 

 

Dataset 

 

Objective 

 
 
Decision Tree [18] 

 
 
Diabetic 
Retinopathy 

 
 
Accuracy- 86.6% 

 
 
301 Chinese hospitals 
provided 5057 records. 

 
 
Five machine learning 
techniques are used with the 
EHR to diagnose DR. 

 
 
Decision Tree [19] 

 
 
Pulmonary 
hypertension 

 
 
Sensitivity is 97% 
 
Accuracy of 92% 
 
Specificity- 73% 

 
 
Pulmonary
 hypertension
 is suspected in 72 
patients. 

 
 
Analyzing MRI images to 
diagnose pulmonary 
hypertension. 

 
 
Decision Tree and 
Fuzzy system 
 
[20] 

 
 
Asthma 

 
 
Kappa- 78.32% 
 
Accuracy- 90% 

 
 
30 of patients with asthma. 

 
Using fuzzy logic and decision 
trees to diagnose and control 
asthma. 

 
The graph below presents the average performance of various 
diseases using Decision tree methods for diagnosis. 

 
 
By using rule-based systems, we can retrieve features from 
electronic medical records quickly. For the extraction of data, 
rule-based systems are used since the most common kind of 
knowledge representation is if-then logic.  
 
Using rule-based systems, domain experts can express and rate 
their expertise. The decision-making process can then use that 
data. To determine the outcomes of rule-based or identically 
based systems, users must input specific attributes or facts, 
such as patient symptoms. It is difficult for someone without 
medical training to do this. A drawback of this method is the  
 
requirement for precise definitions of data properties. Using the 
rule-based method, computer scientists identify rules and 
identify patterns associated with them. Xu et al. [22] used this 
method to identify colorectal cancer. Breischneider et al. [23] 
used automated breast cancer detection using rule-based 
grammar and achieved 90% accuracy. Using a rule-based 
algorithm and machine learning codified algorithm, Jorge et al. 
[24] identified Lupus patients from EMR. 
 
 
 

 
 
 
 
 
 

Figure 04.Comparison of the Decision Tree Method's average 
performance on different diseases 
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Table 9. The Summary of the Rule-based Methods 

 

Methods 

 

Focused 

Disease(s) 

 

Performance 

Measures 

 

Dataset 

 

Objective 

 

Rule-based ML-based 

[22] 

 

Colorectal 
cancer 

 

Accuracy- 99.6% 
Precision- 99.6% 
Specificity- 
96.9% 
F-measure- 
99.6% 

 

1,262,671 patients 
from a synthetic 
derivative database. 

 

Data extraction and 
integration from 
EHRs for Colorectal 
cancer detection 

 

Rule-based grammar 
approach 

 

[23] 

 

Breast cancer 

 

Accuracy of 90% 
The Specificity 
of 59% 
Sensitivity of 
98% 

 

The university 
hospital in Erlangen 
collected the clinical 
reports of 2096 
patients totaling 
8766. 

 

Clinical report
 information 
extraction for breast 
cancer. 

 

The rule-based 
algorithm is, Machine 
learning codified 
algorithm. 

[24] 

 

Definite SLE 

Definite 
probable SLE 

 

Sensitivity- 86% 
Specificity- 60% 
PPV- 46% 
Sensitivity- 84% 
Specificity- 69% 
PPV 65% 

 

400 records in an 
EHR dataset. 

 

From the 
EHR,   recognize 
patients with Lupus. 

 
The graph illustrates the performance of rule-based methods 
applied to the diagnosis of various diseases. 

 

Deep Learning (DL), often referred to as hierarchical learning, 
is a sophisticated modeling approach characterized by its use of 
multiple processing layers to analyze complex data sets. This 
method is increasingly employed in the analysis of the ever-
expanding volumes of EHRs. The application of deep learning 
in the realm of EHRs is particularly notable in research 
endeavors focused on forecasting individual health outcomes 
and assessing potential risks. At the heart of deep learning 
technology are various types of neural networks, each with 
unique capabilities and applications. These include 
convolutional neural networks (CNNs), known for their 
prowess in processing visual imagery; recurrent neural 
networks (RNNs), which excel in handling sequential data; 
deep belief networks (DBNs), which are effective in 
probability-based learning; and autoencoders, specialized in 
data encoding and reconstruction tasks. These diverse neural 
network architectures enable deep learning to effectively 
interpret and utilize the vast and complex data present in EHRs 
for advanced medical research and analysis.  
 
 
 
 
 

Figure 05. Comparison of the Decision Tree Method's 
average performance on different diseases 
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Methods 

 

Focused 

Disease(s) 

 

Performance 

Measures 

 

Dataset 

 

Objectives 

 
Unsupervi
sed deep 
feature 
learning 

 
[21] 

 
78 diseases 

 
Accuracy- 92.9% 

 
F-score- 18.1% 

 
The Data warehouse from 
Mount Sinai contains 
700,00 patients. 

 
Predictive models can be 
developed using patient 
representations from EHRs. 

 
CNN and 
Framingha
m risk 
score 

 
[26] 

 
Cerebral 
infraction (CI), 
Pulmonary 
Infarction (PI), 

 
And Coronary 
Heart (CH) 

 
Accuracy CI-96.5% 

PI- 95.6% 

CH- 93.6% 

 
From a Chinese hospital 
with a grade-A rating, 
4298 individuals were 
evaluated. 

 
Clinical notes based on a 
uniform model for assessing 
multiple diseases. 

RNN [27] 
 

Numerous 
diseases 

 
Recall- 79.58% 

 
260K patients. 

 
Applied to longitudinally 
timestamped EHRs. 

 
RNN [28] 

 
Pediatric 
Asthma 

 
Precision- 84.54% 

 
F-measure- 85.08% 

 
Recall- 85.65% 

 
4000 patients from 
Physionet and 4013 
patients from Olmsted 
Country Birth Cohort. 

 
RNN-based asthma 
classification in pediatrics. 

DBN [30] 
 
Parkinson’s 
Disease 

 
Accuracy- 94% 

 
Data set on 31 
Parkinson’s patients. 

 
DBN-based Parkinson's
 disease 
diagnosis system. 

 
DBN
 wi
th greedy 
Approach 

 
[31] 

 
ADHD 

 
NI- 69.83% 

 
Accuracy- NYU- 
63.68% 

 
Neuroimaging-samples 
of 73 

 
New York University- 
samples of 263. 

 
A greedy approach to the 
diagnosis of ADHD using 
DBN. 

 
Stacked 
AE and 
Softmax 
classificati
on. 
[32] 

 
Cervical cancer 

 
Accuracy- 97.25% 

 
668 samples from the 
UCI dataset. 

 
Stack autoencoder and 
softmax classification for 
cervical cancer classification 
and diagnosis. 

 
Stacked 
AE and 
GAN 

 
[33] 

 
Breast cancer 

 
Sensitivity- 95.28% 
Accuracy- 98.05% 
Specificity- 99.47% 

 
Breast cancer records are 
available for 569 cases, of 
which 212 are malignant 
and 357 are benign. 

 
Generative Adversarial 
Networks (GAN) and stacked 
autoencoders for disease 
prediction from EHRs. 

Table 5. The Summary of the Deep Learning Methods
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IV. DISCUSSION 

 
This paper provides a comprehensive review of current 
techniques that have been used in health prediction and 
monitoring using EMR data, with a focus on the integration 
of AI methodologies within EMR systems. The study 
highlights the potential of AI-driven approaches, including 
Deep Learning (DL), Machine Learning (ML), and Rule-
Based Methods, in accurately diagnosing diseases. The paper 
discusses several instances where AI models have achieved 
predictive accuracies using the models in existing systems. 
According to the literature review of this paper, a few of the 
strengths and weaknesses were identified in each of these AI-
driven approaches.   
Because of their adaptability and capacity for probabilistic 
reasoning, machine learning techniques like support vector 
machines (SVM), Bayesian methods, and decision trees have 
been useful in the diagnosis of conditions like cancer, 
arthritis, and pulmonary hypertension. These techniques have 
also shown high predictive accuracies in a number of different 
disease types. SVMs are a powerful technology that are 
essential to data mining procedures since they support both 
linear and nonlinear regression techniques. SVMs are helpful 
for data prediction and classification, especially in the area of 
health research, because they can do binary and multiclass 
classification. SVMs do have significant drawbacks, too, such 
as the computationally demanding nature of model training 
and optimization. In contrast to more straightforward models 
like decision trees, they are also harder to interpret, which can 
be problematic in medical contexts when clarification is 
crucial. The Bayesian Network is another type of machine 
learning technology that has pros and limitations. Bayesian 
networks are helpful in controlling uncertainty and 
probabilistic reasoning in the setting of medical diagnostics, 
where ambiguity is common. They improve model 
predictions by combining prior information and experience. 
However, high-dimensional data is an issue for BNs, and as 
the number of variables increases, so does the model's 
complexity, making computation and interpretation 
challenging. Decision trees are machine learning techniques 
that give unambiguous decision paths and are highly 
interpretable. As a result, they can be used to justify 
diagnostic judgments in the healthcare industry. They perform 
effectively with numerical and categorical data, can adapt to 
various types of medical data, and can detect diseases early. 
However, decision trees are prone to overfitting, especially 
with complex or noisy data, and are limited in handling non-
linear relationships compared to more sophisticated models 
like SVMs or deep learning techniques. 
Rule-based approaches, which are noted for their speedy 
feature retrieval and simple knowledge representation, have 
exhibited excellent accuracy in specific disease diagnoses, 
such as colorectal cancer with an accuracy of 99.6% [22] and 
breast cancer with an accuracy of 90% [23]. However, they 
have some disadvantages, such as reliance on precise 
definitions, restricted flexibility and scalability, poorer 
accuracy in some circumstances, and difficulty understanding 
and implementing for non-experts. While rule-based systems 
have demonstrated excellent accuracy in certain areas and are 
praised for their simple logic, their rigidity and the 
requirement for precise data definitions can be significant 
limits, particularly in the dynamic and complicated field of 

healthcare. 
Deep learning (DL) has demonstrated remarkable capabilities 
in biological applications. Because of its various processing 
levels, it is extremely successful at processing complex data, 
such as electronic medical records (EMR). DL approaches 
have shown great accuracy and sensitivity in a variety of 
medical activities, such as breast cancer detection, with an 
accuracy of 98.05% [33], although DL has certain limitations. 
Large datasets are often required for training, which can be a 
drawback in cases when data is sparse. Furthermore, training 
and implementing DL models can be computationally 
demanding, necessitating significant processing power and 
resources. Furthermore, DL models, particularly 
sophisticated structures, can lack interpretability, making it 
difficult to grasp the reasoning behind diagnoses or treatment 
decisions, which is critical in healthcare. 
This review discusses different techniques for predicting 
cancer diseases, including SVM, Bayesian networks, rule-
based methods, and stacked AE. Using SVM, Zhang et al. [9] 
classified cancer and achieved an accuracy of 97.33 %, while 
Zeng et al. [10] identified breast cancer with an accuracy of 
93%. Using a Bayesian network, a similar cancer disease 
could be identified with 64.83% accuracy, while the same 
disease could be identified using Naive Bayes with 64.83% 
accuracy. Rule-based grammar was used to detect colorectal 
cancer [22], which earned an accuracy of 99.6%. Breast 
cancer was also detected using rule-based grammar [23], 
which achieved an accuracy of 90%. By combining AE and 
Softmax, Adem et al. of [32] classified cervical cancer with 
97.25 percent accuracy. In this study, stacked AE and GAN 
[33] were used to predict breast cancer, and the accuracy rate 
was 98.05%. 
To predict Asthma, different methods have been used. The 
Decision Tree and Fuzzy system [20] were used to diagnose 
and control asthma levels, and this system showed an 
accuracy of 90%. Wu et al. [28] used the RNN method to 
create a pediatric asthma prediction system with an accuracy 
f- a measure of 85.08%. 
Even though there are many predictive models available, most 
of them are designed to predict single diseases without 
considering the many factors that can affect patients, for 
example, a cancer prediction system will only consider the 
symptoms of a patient to predict cancer and will not suggest 
other diseases based on these symptoms. However, several 
models have been developed to help identify multiple 
diseases, and this review discusses these systems. Al-Aidaroo 
et al. [16] classified and detected multiple diseases, involving 
hepatitis, cancer, and liver disorders, with an accuracy of 
97.43%. With 86% and 84% sensitivity, [24] based on a rule-
based algorithm, definite and probable Systemic lupus 
erythematosus (SLE) were detected. Shi et al [26] is another 
researcher focused on multiple diseases Cerebral infarction 
(CI), Pulmonary Infarction (PI), and Coronary Heart (CH) 
detected in this system, accuracy reached for each disease was 
CI 96.5%, PI 95.6%, CH 93.6%. Another system that is used 
to detect multiple diseases [21] is used to derive 78 diseases 
for this dataset taken from the Mount Sinai data warehouse of 
7000 patients, this system received a 92.9% accuracy. 
Data from the literature study indicates that certain 
approaches are more effective than others. While certain 
techniques may be more accurate for some illnesses but less 
accurate for others. 
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V. CONCLUSION 

 
According to this review, several EMR system studies have 
been conducted recently to learn new facts about healthcare 
using technology. Using various procedures, EMRs provide a 
lasting record of patient care, reducing vulnerabilities and 
solving problems in modernized healthcare records. 
Physicians can provide better care to patients when they have 
access to accurate and timely information. EMRs assist 
physicians in providing safer care, reducing medical errors, 
and improving the diagnosis of diseases. A competent EHR 
not only keeps track of patient allergies and medications but 
also checks for concerns when new medications are 
administered. An EMR can identify patterns of potentially 
related adverse outcomes and alert at-risk patients quickly. 
With the advancement of IT, EMR systems are now widely 
used to manage medical data and prescribe medication. 
Different EMR systems using different techniques are 
installed and used in various healthcare facilities and these 
EMR systems have proven essential to delivering better 
patient care. In this review, it is classified into three primary 
categories machine learning, rule-based approach, and deep 
learning method which are then further subdivided depending 
on the suggested algorithm and have attempted to cover the 
most recent and current studies on autonomous diagnosis 
from electronic data. As discussed throughout the review, 
some methods can give accurate results in one type of disease, 
but not in another, and most systems are designed to predict 
and diagnose one specific disease, but very few systems have 
been able to detect multiple diseases simultaneously. 
According to the literature study, certain approaches were 
more effective than others. 
 
Although EMR systems have their benefits, there are still 
some drawbacks, such as the need to update patient records 
after every appointment or consultation. Otherwise, 
physicians or clinical supervisors may later check the system 
and find incorrect information resulting in an inappropriate 
treatment plan. It is also possible that records may not be 
updated or inaccessible for an extended period if there is a 
power outage, location problems, or another issue. Another 
disadvantage is that they are still quite expensive. 
Furthermore, future enhancements in EMR systems will 
include the ability to extract vital information from laboratory 
reports automatically. This integration of lab data with other 
EMR data will enrich the datasets used for predictions, 
leading to more accurate and comprehensive diagnostic 
insights. By encompassing a broader range of clinical 
information, including detailed lab results, these advanced 
systems will significantly refine the precision of disease 
prediction and patient treatment plans. 
 
EHRs will be capable of handling massive amounts of data 
and complicated clinical test results in the future and 
eliminate current limitations and develop by using advanced 
existing methods and techniques to predict diseases more 
accurately. Related issues such as uncertainty in drawing 
conclusions and privacy issues will be addressed, and EHRs 
will come up with the genetic and behavioral data required for 
accurate prescribing and patient care improvement. 
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