

Volume 02 Issue 02

January 2024

i

International Journal of Research in Computing (IJRC)

Volume 02 Issue 02

January 2024

ISSN 2820-2139

© 2024 Faculty of Computing, General Sir John Kotelawala Defiance University, Sri

Lanka.

All rights reserved.

No part of this publication may be reproduced or quoted in any form or by any means, electronic
or mechanical, including photocopying, recording or by any information storage or retrieval
system, without permission in writing from the Faculty of Computing of General Sir John
Kotelawala Defence University, Ratmalana, Sri Lanka.

Published by

Faculty of Computing, General Sir John Kotelawala Defence University,

Ratmalana, Sri Lanka

Tel: +94-11-2635268

E-Mail: editor@ijrcom.org & editorijrc@kdu.ac.lk

Website: http://ijrcom.org/

ii

EDITORIAL COMMITTEE

CHIEF ADVISORS

Dr. HL Premarathne
Senior Lecturer (Retied)
School of Computing, University of Colombo, Sri Lanka

Dr. ADAI Gunasekara
Dean/ Senior Lecturer
Department of Computer Science,

Faculty of Computing,

General Sir John Kotelawala Defence University, Sri Lanka

EDITOR IN CHIEF

Dr. B Hettige
HoD/Senior Lecturer
Department of Computer Engineering,

Faculty of Computing,
General Sir John Kotelawala Defence University, Sri Lanka

ASSOCIATE EDITORS IN CHIEF

Prof. TL Weerawardane
Dean/Professor of Electronics and Telecommunication
Faculty of Engineering,
General Sir John Kotelawala Defence University, Sri Lanka

Dr. HRWP Gunathilake
Senior Lecturer
Department of Computer Science, Faculty of Computing
General Sir John Kotelawala Defence University, Sri Lanka

Dr. LP Kalansooriya
Senior Lecturer
Department of Computer Science, Faculty of Computing
General Sir John Kotelawala Defence University, Sri Lanka

Dr. N Wedasinghe
Senior Lecturer
Department of Information Technology, Faculty of Computing
General Sir John Kotelawala Defence University, Sri Lanka

iii

MEMBERS OF THE EDITORIAL BOARD

Prof. Yukun Bao

Deputy Director of Center for Modern Information Systems
Huazhong University of Science & Technology, China

Prof. R.Hoque

Professor
Law at the University of Dhaka, Bangladesh

Prof. Shamim Kaiser

Professor
Institute of Information Technology
Jahangirnagar University, Bangladesh

Dr. Attaphongse Taparugssanagorn

Associate Professor
School of Engineering and Technology

Asian Institute of Technology, Thailand

Snr.Prof. AS Karunananda

Senior professor
Department of Computational Mathematics, Faculty of Information Technology

University of Moratuwa, Sri Lanka

Prof. Prasad Jayaweera

Head/Professor of Computer Science
Department of Computer Science, Faculty of Applied Sciences
University of Sri Jayawardhanapura, Sri Lanka

Assoc. Prof. Anuja Dharmaratne

Associate Head (Education) School of IT
Monash University, Malaysia

Dr. Romuald Jolivot

Research Scholar
School of Engineering
Bangkok University, Thailand

Dr. MB Dissanayake

Senior Lecturer
Department of Electrical and Electronic Engineering
University of Peradeniya, Sri Lanka

iv

Dr. APR Wickramarachchi

Senior Lecturer
Department of Industrial Management

University of Kelaniya, Sri Lanka

EDITORIAL ASSISTANTS

Ms. DVDS Abeysinghe

Lecturer

Department of Computer Science,

Faculty of Computing,

General Sir John Kotelawala Defence University, Sri Lanka

Ms. KD Madhubashini

Instructor

Department of Computational Mathematics,

Faculty of Computing,

General Sir John Kotelawala Defence University, Sri Lanka

Proofreading

Ms. DVDS Abeysinghe

Lecturer

Department of Computer Science,

Faculty of Computing,

General Sir John Kotelawala Defence University, Sri Lanka

Ms. KD Madhubashini

Instructor

Department of Computational Mathematics,

Faculty of Computing,

General Sir John Kotelawala Defence University, Sri Lanka

v

CONTENTS

Exploring Mechanisms for Detecting Violent Content in Sinhala Image Posts:

Rationale with Unsupervised vs Supervised Techniques

U Dikwatta, TGI Fernando, and MKA Ariyaratne

1

An Approach to Examine and Recognize Anomalies on Cloud Computing
Platforms with Machine Learning Concepts
MPGK Jayaweera, WMCJT Kithulwatta, and RMKT Rathnayaka

17

Integrated Approach for Asset Price Forecasting via Prophet Model and

Optimizing Investment Strategies through Genetic Algorithms
JR Senadheera, MKP Madushanka, and HRWP Gunathilake

34

Convolutional Neural Network-Based Facial Expression Recognition:
Enhanced by Data Augmentation and Transfer Learning
HMLS Kumari

42

A Comprehensive Review of Methods Used for Health Prediction and Monitoring

Utilizing an Electronic Medical Records (EMR) System
SP Jayasekera, and LP Kalansooriya

50

1

Exploring Mechanisms for Detecting Violent

Content in Sinhala Image Posts: Rationale with

Unsupervised vs Supervised Techniques

U Dikwatta1#, TGI Fernando1, and MKA Ariyaratne2
1 Department of Computer Science, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
2 Faculty of Information Technology and Communication Sciences, Tampere University, Finland

Corresponding author: U Dikwatta, Email: umanda@sjp.ac.lk

ABSTRACT This research explores the different avenues in machine learning to classify Sinhala image posts. Image posts
in social media are one big weapon that conveys information directly to people. Image posts contain both visuals and text.
English based research work is common in this regard, but only a handful can be seen from other languages. The target
language was a low-resource language, Sinhala. Unsupervised algorithms were used to classify image posts and supervised
algorithms were involved classifying manually extracted text in image posts. The classification decides whether the posts
are violent or nonviolent. The trained supervised models were tested with interpretability models to identify the words that
cause the decision of violent or nonviolent. The findings reveal supervised algorithms perform better than unsupervised
algorithms in classifying image posts. However, improved results can be obtained by increasing the size and the variety of
the dataset.

KEYWORDS: Deep learning, machine learning, social media, violence detection

I. INTRODUCTION

People use social media as a powerful tool for communication.
The birth of 2-way communication began with Web 2.0 and has
been evolved, so now people who use social media can modify
the contents as well as provide their thoughts towards
enormous topics [30]. As with useful and entertaining content,
social media also provides a platform for users who spread
violent content that disperses violence to the physical world.
One of the earliest examples of such behaviour can be pointed
out through a case study done in 1997, which was based on an
incident in Bangladesh where violence originated in social
media [42]. Also in 2008, image posts about the resentment of
immigrants in Italy were circulated through social media [45].

As images can talk to people way faster than the words, image
posts have become very popular in social media to convey
ideas; to spread good as well as the opposite. Hence, image
posts shared on social media have become a powerful
mechanism to disperse violence. They contain visual and text
elements. One of the main concerns even from the early days
of social media is to identify smart mechanisms for early
detection of such poor posts and help to clean the social media
platforms from such contents. Based on such concerns, there
are many research attempts. However, most of such findings
are based around image posts having text elements in the
English language. A handful of research can be found from
other languages, and we have listed them in section 2.

In natural language processing, languages are categorized by
whether they are high or low resource. Low resource languages
lack data that can be used for machine learning (ML) or other
processing, and high-resource languages are rich in available
data. With the birth of the Unicode character system, usage of
law resources languages has accelerated in a noticeable way.
That directly affects the usage of such languages in social
media as well. Image posts with violence; what we are
interested in this research can also be seen with text elements
in such low resource languages.

In this work, we aimed to work on a low-resource language and
chose ‘Sinhala’ as the preferred low-resource language. We
concern text elements inside Sinhala image posts. As the
literature revealed most of the text classification research works
focused on “Sinhala” were based on Facebook comments or
Tweets. In those works, they have used the row text form user
comments. This research is different from the input from most
of such research. Most of the research on the text classification
connects with ML techniques since data are concerned as the
main resource at hand in decision making [23]. Going along the
same line, this research also focused on using unsupervised and
supervised ML techniques to identify the desired image posts.

This research work has mainly four phases. First, we modified
the dataset introduced in previous research to include a
balanced dataset that provides violent and nonviolent image
posts [20]. Then, we retrained the unsupervised models as an
anomaly detection problem introduced in earlier research on

2

the new dataset [20]. Next, we used supervised machine
learning algorithms such as shallow learning and deep learning
(DL) to classify the manually extracted text. Going beyond
acquiring traditional training testing accuracies as goodness of
measures, as the last phase, in this research we tried using
explainable AI processes that allow human users to trust the
results and output created by ML algorithms. By following the
phases, the aim of the research, which is on exploring the
capabilities of supervised and unsupervised machine learning
techniques to detect violent context in Sinhala images posted
was achieved.

For the convenience of the readers, this paper is arranged as
follows. In the next section, we present the literature relevant
to the current research. Section III lists used materials and
methodologies in our work. In section IV, we present our
research results and finally in section V we discuss our
findings, present the drawn conclusions, and point out future
possibilities.

II. RELATED WORKS

Violence detection in social media encompasses several
distinct categories such as modality based, classification
algorithm based, and language based. Modality-based violence
detection has four distinct categories: text, images, videos, and
multi-modal approaches that combine both textual and visual
elements. However, this research primarily focuses on social
media images, and we have not extensively discussed the
techniques related to videos. In addition to the modality-based
categorization, violence detection utilizes classification
algorithms that employ ML and DL techniques. Furthermore,
violence detection encompasses several language-based
studies: English, Sinhala, and other low resource languages
such as Arabic. The literature includes scholarly studies from
the earliest publication in 2014 to the most recent. We present
previous work by the language, the research work has been
focused, from high level languages to low level languages.

A. Related Research on English Language

Hate speech is one way of spreading violence in social media.
Different organizations, communities and social media sites
have given different definitions to hate speech. Hate speech can
be defined as a set of terms in a defined language that attacks a
person or a group of people regarding religion, ethnicity,
gender, sexual orientation. These hateful contents can persuade
people to violence. Hate speech can be detected in several
ways; however, many research studies were based on machine
learning techniques as data is incorporated with the process.
When it comes to ML, feature extraction is one of the main
tasks in the process of decision making. Review works have
pointed out, in ML, feature extraction for hate speech detection
has been done using several approaches. Bag-of-words (BoW),
term frequency - inverse document frequency (TF-IDF), rule
based, n-grams, word embeddings, and topic classification
methods are some of them. Further, the reviews discussed the

contribution of shallow ML algorithms like support vector
machines (SVM), naïve Bayesian (NB), logistic regression
(LR), decision trees (DT) to the process of hate speech
detection. Authors also point out the classification mechanisms
used in detecting hate speech using deep learning algorithms.
However, the comparisons among methods were not discussed
as most of the newly created datasets are not published and
publicly available [23, 55]. Anusha Chhabra and Dinesh Kumar
Vishwakarma presented another review on multi-modal and
multilingual social media hate content detection using shallow
and deep learning ML models [10]. The findings of the survey
point out; almost all the past reviews were conducted covering
text-based hate speech detection studies, only two datasets
were identified as multi-modal: text and image based, and DL
approaches have outperformed shallow learning approaches.

Going deeper into actual works performed for the English
language, one of the earliest works proposed a mechanism
using paragraph2vec [31] and continuous bag-of-words
(CBOW) [39] for on-line user comments in Yahoo Finance
website to hate speech detection. LR was used as the
classification algorithm. The proposed method has given higher
Area Under the Curve (AUC) than existing BoW methods [21].

Tweets are an interesting and powerful communication
mechanism among a lot of people. Hate speech is also a
frequent content in tweets. In a research study, hate speech in
Tweets was investigated as a multi-class problem with three
classes: hate (strongest hate level), offensive and neither [15].
Five shallow ML algorithms; LR, linear SVM, NB, DT,
random forest (RF) were used to build the models. The results
showed that LR and linear SVM performed better than the other
three algorithms. L2 regularization (Ridge Regression)
combined with LR improved the accuracy of the normal linear
regression model. Going beyond the shallow algorithms, in [5],
has used deep neural networks (DNN) to detect hate speech in
tweets. Convolutional neural network (CNN), long short-term
memory (LSTM) and fastText were used as feature spaces.
Precision, recall and F1 score were used to compare the results.
DNN achieved better results than shallow machine learning
methods that utilized Char n-gram, TF-IDF and BoW
embeddings. Higher results were obtained for utilizing random
embeddings trained with LSTM and using them in a gradient
boosted decision trees (GBDT) algorithm for classification.

Another research used English as a language to test the
performance of different feature extraction methods combined
with Linear SVM model [36]. Character n grams, word n-
grams, and skip grams were used as feature extraction methods
to detect hate speech. The Character 4-gram method has shown
better results than other methods and achieved an accuracy of
78%. However, previous research done by Malmasi et al.,
claimed better results than the 4-gram method using an oracle
ensemble method with SVM [35]. Data is crucial for any
machine learning process, so hate speech detection. Won et al.

3

has formed a protest image dataset [72]. They have employed
a ResNet based model to violence detection in images and
OpenFace based model [4] for emotion detection of people in
violent scenes. They have found their model performs well in
identifying violent scenes but does not perform well for
emotion detection. As same, Sun et al. have created a new
dataset that consists of still images related to violence and
nonviolence [60]. They have used low level features as the
multi views in their dataset along with features extracted from
CNN. Low level features include dense scale invariant feature
transform (DSIFT), histogram of oriented gradient (HOG) and
local binary pattern (LBP). Authors have proposed new multi
view maximum cross entropy discrimination.

Watanabe et. al. introduced a new feature extraction method
that incorporates sentiment, semantic, unigrams and pattern
feature to identify hate text in Twitter [70]. They have used
‘‘J48graft’’[69], SVM and RF as classifiers. ‘‘J48graft’’ has
outperformed the other two classifiers. The new model
‘‘J48graft’’ is an extension of decision tree grafting algorithm
that increases the performance of the original algorithm with
respect to both bias and variance. Further Z. Zhang and L. Luo
addressed the problem of “long trail” in hateful text in social
media, specifically in Twitter [73]. This research has proposed
a model that incorporates two DNN architectures with CNN
and Gated Recurrent Unit (GRU). This method has surpassed
state-of-the-art methods on a Twitter dataset and established a
new benchmark for future research that involves identifying
hate speech.

Gang violence, one of the other types that create textual as well
as visual modality, can be defined as criminal and non-political
acts of violence committed by a group of people who regularly
engage in criminal activity against innocent people. Research
was also carried out around this area and multi-modal
approaches were used to detect images with gang violence [7].
They used tweets to create the datasets that were annotated with
psychosocial codes, aggression, loss, and substance use. Text
features were detected using unigram, bigram, Part-of-Speech
(POS), and CNN features. Regional-based convolutional neural
network (R-CNN) was used to detect image features. Fusion
methods: early fusion and late fusion were used as multi-modal
feature extraction methods. Text feature classification showed
better results for loss code where image features classification
showed better results for aggression and substance codes.
Fusion method has shown promising results in this research.

Amorim et al. introduced novelty detection in a temporal
window using data fusion technique [3]. The objective of this
approach is to detect comments that stand out from others
within a given time frame considering both present and past
comments. The dataset used in this study consists of posts from
social media platform Twitter. Architecture comprises three
key components: feature extraction from images and text, data
fusion and unsupervised algorithm. Two distinct architectures

were employed by rearranging the order of three key
components. In the first architecture, input to the architecture
is a data stream and MASK-RCNN [26] is the data fusion
algorithm that converts the stream into textual representation.
Then an autoencoder was employed to convert the textual
representation into a vector and unsupervised algorithm was
employed to classify the vectors. Second architecture,
transform tweet images and texts into vectors using an
autoencoder. Then an unsupervised algorithm identifies
novelties using the vectors of images and texts. Finally, the
AOM [1] fusion algorithm was employed to fuse the scores
obtained from the unsupervised algorithm. Results depict that
MASK-RCNN method outperforms AOM method.
Suryawanshi et al. proposed a novel system to detect offensive
memes by leveraging multi-modal data: text and images [63].
Going beyond text and visual datasets, authors have curated a
new dataset including memes that contain both text and images.
They suggested an early fusion method that incorporates
stacked LSTM, BiLSTM and CNN for text features and visual
geometry group (VGG-16) for visual features. Results
demonstrate that the multi-modal approach has outperformed
methods that incorporate only a single mode in terms of
precision, F score and recall.

In [41], a Bidirectional Encoder Representations from
Transform (BERT)-based transfer learning method has been
introduced for hate speech detection. The new method consists
of different fine-tuning approaches, adding nonlinear layers,
adding Bi-LSTM layers, and adding CNN layers. The fine-
tuned BERT-based method has produced better results than
other state-of-the-art methods such as character n-gram with
LR [67, 15], CBOW with multi-layer perceptron feed forward
neural network [68], and original BERT model. Further in a
comparative study conducted on hate speech detection using 14
shallow and DL models with three commonly used datasets
revealed that BERT-based models outperform other methods,
and the TF-IDF-based classifier outperforms other DL models
[34]. In another work, authors proposed an ensemble method
that employs a combination of a fine-tuned BERT based model
and a parallel recurrent model for multi aspect hate speech
detection [37]. The proposed model was compared with pooled
stacked Bi-LSTM, Bi-GRU models and ensemble models that
combine the outputs of BERT, Bi-LSTM, and BI-GRU. The
new model yielded better results compared to other methods.
In a recent research work, authors have proposed a multi-modal
fusion mechanism to combine both text and visual features for
classifying fake news [65]. They have obtained a dataset along
with their captions. A fine-tuned BERT model was used to
classify text and higher results were obtained when compared
with other DL models. Fine-tuned Xception network has
obtained higher results for visual feature classification.
Concatenate fusion techniques have obtained higher results
than other fusion techniques. Fusion methods have achieved
higher results than using text or visual solely.

4

To fulfil the lack of data sets containing fight images, authors
in [2] have developed a new still fight image dataset collected
from social media sites. They have used DL networks like
VGG-16, residual network (ResNet50), ResNeXt50, and vision
transformers (ViT Large 16) for the classification and ViT
network has surpassed the results of other models. Most of the
violent scene detection experiments were done for video-based
datasets. As the next phase of the research, they have compared
the results obtained for temporal models with frame-based
models that were trained. Authors have done a cross-dataset
experiment to evaluate which model generalizes well with all
the datasets. Models that are trained for still images generalize
better than the models trained for video-based datasets. We
have studied a few but mostly relevant literature which were
based on the English language. Compared to English, research
work on other languages is limited.

B. Related Research on Sinhala Language

In one of the earliest works that touch Sinhala for the first time,
English comments on a Sri Lankan website were investigated
for hate speech [52]. NB, SVM, LR, DT, and k-means were
tested with BoW and TF-IDF. NB with TF-IDF achieved a
better F-score than other methods. In another previous study,
researchers successfully identified racist Sinhala comments
using a two-class SVM and n-gram approach, achieving over
70% accuracy [19]. The dataset comprised randomly selected
Sinhala comments from social media platforms. However, the
performance declined as the dataset size increased. Identifying
abusive comments in Sinhala language was also tried in
research [54]. SVM, Multinomial NB (MNB), and random
forest decision tree (RFDT) were used as classifiers. BoW,
word n-gram, character n-gram, word skip-gram were the
feature extraction mechanisms. MNB showed better results
than other classifiers. Character tri-gram and character four-
gram showed better results than other feature extraction
methods. Corpus-based approaches showed better results.

A multi-level and two-level hate speech classification was done
for Sinhala social media comments [53]. Authors have
mentioned the difficulty in finding a proper data source for
Sinhala. CNN and SVM were used as classification algorithms.
CNN has shown higher results for binary classification. SVM
has shown higher results for multi-level hate speech
classification. According to the authors, a lower F1 score is
achieved due to the imbalance dataset.

For the first time in Sinhala language, images were used in [59]
to classify Sinhala hate text in images. Several ML techniques
were used to model the data. The text has been automatically
extracted from images. MNB has shown better precision,
recall, and F-measure than other ML techniques.

Adapter-based pre-trained multilingual models have been
proposed for code mixed and code-switched text classification
that includes Sinhala text [49]. The cross-lingual representation
of robustly optimized BERT pre-training approach (XLM-R),
with basic fine-tuning, has outperformed all other models.

XLM-R with adapters has further improved the results.
BERTifying Sinhala is an analysis carried out to evaluate the
performance of XLM-R, Language-Agnostic BERT Sentence
Embedding (LaBSE), and Language Agnostic SEntence
Representations (LASER) in Sinhala text classification [18].
There, XLM-R has performed better than other models.

This summary covers the limited research carried out on
violence detection in Sinhala. It highlights the pressing need for
further research in low-level languages like Sinhala.

C. Related Research on Other Languages

Arabic, Bengali, Italy can be identified as other languages that
have contributed more on hate speech detection research. In
reference [43], the authors constructed a dataset for Arabic by
gathering data from popular social media networks. They
utilized this dataset for hate speech detection purposes. They
have performed data filtering to clean the dataset. Dataset was
annotated. Then the dataset was trained and tested with ML and
DL models. Complement NB surpassed other ML models for
accuracy, F1 score, recall and precision. RNN outperformed
CNN in DL models. Regarding the previous datasets on Arabic,
the dataset collected in this research has given higher accuracy.
Further in [44], authors have developed an Arabic dataset for
topic classification, sentiment analysis, and multi-label
classification of on-line social media networks (OSNs).
Removing tokens beyond a specific length, removing stop
words and stemming were performed as preprocessing steps.
BoW, n-gram, TF-IDF were used as feature extraction
methods. Shallow ML algorithms were used. Authors have
incorporated grid search to select the best set of hyper
parameters. Chi-square feature selection and hyper parameter
tuning has improved the results. n-gram (1,2) with linear
support vector classification (LinearSVC) has obtained higher
results in topic classification. LR with BoW has yielded higher
results on sentiment classification while TF-IDF with
LinearSVC showed higher results for multi-label classifiers.
Authors have also found a relationship between hate speech
and OSNs post topics. Their proposed mechanism yielded
83.7% accuracy in filtering Facebook posts.

In another study related to Arabic, proposed a new mechanism
to detect contradictions in Arabic sentences, a special scenario
of natural language inference (NLI) [29]. Authors have created
a dataset consisting of more than 6,000 sentence pairs of Arabic
language. Their dataset consists of three different classes:
contradiction, entailment and neutral. They augmented the
dataset by automatic translation using two existing datasets.
Feature extraction models used were word embedding
mechanisms and language level feature extraction methods.
SVM, stochastic gradient descent (SGD), DT, adaptive
boosting (AdaBoost), k-nearest neighbour (KNN) and RF were
used as classification methods. They have evaluated the results
on their original dataset and two translated datasets. Obtained

5

results convince higher accuracy for RF classification that
employs BoW vector with contradiction vector.

Regarding Bengali language, research was conducted to
evaluate the performance of multi-class sentiment
classification on Bengali text [25]. Authors proposed a system
that employs CNN and LSTM architectures. They have built a
Bengali text dataset of size 42,036 social media comments that
has four different classes. Authors have selected MNB, LR,
DT, RF, SGD, and SVC along with their word embedding
mechanisms like TF-IDF and count vectorizer (CV). LSTM,
Bi-LSTM, Bi-GRU and a model that employs both CNN and
LSTM (C-LSTM) were used along with word embedding as
DL architectures. C-LSTM has outperformed other baseline
methods.

We have summarized the related work in the context of hate
speech detection mainly with the involvement of shallow and
complex machine learning techniques. For convenience, we
categorize our findings language wise. The findings opened the
avenues and pointed out the importance of conducting more
research on low level languages such as Sinhala, which was
tried to achieve in the current research.

III. MATERIALS AND METHODS

Here, we present a detailed description of how our research has
been conducted. As the first step of the study, we have
composed a dataset that includes Sinhala violent and
nonviolent images mainly collected from Facebook. We have
employed two approaches to classify the dataset into two
categories, nonviolent and violent. The first approach is
clustering where images are fed to unsupervised algorithms.
The second approach is to utilize manually extracted textual
parts of the images to train supervised learning algorithms. To
train supervised ML algorithms, the dataset was annotated as
nonviolent and violent. To evaluate the results, we employed
four metrics commonly used in ML studies: accuracy,
precision, recall, and F1-score. One drawback on ML
algorithms is that they are like black boxes, and we do not know
why a ML model predicts a text as violent or nonviolent, which
words in the text caused the decision. To find out which words
caused the decision, in this research, we further employed
explainable AI (XAI) methods such as local interpretable
model-agnostic explanations such as (LIME) [50] and Shapley
additive explanations (SHAP) [33] and integrated gradient (IG)
[61]. The overall process of supervised learning is depicted in
Figure 1.

A. Dataset collection

All images were manually downloaded from Facebook. We
found Facebook groups and their pages that are specialized for
different topics that are related to our study. We used such
pages to download images and we have also used keyword
search to download violent posts. We identified commonly
used violent words and treated them as keywords. The final
dataset consists of 3,463 nonviolent and 3,465 violent images.
Figure 2 and Figure 3 depict a nonviolent image and a violent
image respectively.

Figure 1. Supervised learning training process

Figure 2. Image nonviolent Figure 3. Image violent
 content content

As the study was conducted mainly based on two types of ML
algorithms, two types of data preparation were needed. For the
unsupervised algorithms, mainly more nonviolent data were
collected. For that basically a subset from [20] is used. 2,463
nonviolent image posts were used to train the unsupervised
algorithms.

For the supervised algorithms, a different data handling process
is employed. For that, a dataset was constructed by combining
the data collected from previous research [20] with additional
violent image posts. Textual portions of the images were
extracted manually to perform the text classification. Unicode
characters were utilized during extracting the text parts since
Unicode characters provide device and platform-independent
characters. For the supervised algorithms, data collection was
followed by Data Annotation, Data Augmentation, Data
cleaning, and Data Preprocessing.

1) Data/Images Annotation:

Two volunteer annotators annotated the dataset. The annotation
process used the guidelines described in previous research [20].
If either the textual or visual component exhibited violence, the
post was labelled as violent. A post can be identified as violent
if it contains content that abuses a religion, race, or other
beliefs; targets individuals or groups causing emotional harm

6

or displays sexism. The posts that contain sarcasm were
regarded as violent as it can inflict emotional distress on
individuals or groups. Cohen’s kappa was calculated to
evaluate the agreement between two annotators, and scikit-
learn library was used for the Cohen’s kappa calculation [12].
The calculated Cohen’s kappa value for the dataset was 0.9.

2) Data/ (Images, Text) Augmentation:

To enhance the accuracy of deep learning models, a larger
dataset is expected. In the realm of ML, expanding a dataset
using the existing samples is referred to as data augmentation
[22, 58]. In the context of unsupervised learning our inputs
were entire images. Therefore, we performed data
augmentation techniques for the images such as random
rotation, colour jittering and random horizontal flipping to
generate additional variations of the existing images. We used
random rotation to rotate images by a random angle, colour
jittering to change the brightness, contrast, saturation, and hue
of images randomly and horizontal flipping flip images
horizontally for a given probability. When applying
augmentation to our dataset, we followed a novel technique: we
individually applied the three augmentation techniques to our
training dataset, then concatenated the resulting datasets with
the original dataset and achieved 9,852 as the size of the final
training dataset.

For the textual components, a technique called back translation
was employed to expand the dataset. 1,000 violent and 1,000
nonviolent texts were randomly selected for back translation.
The initially selected text was translated into English and was
subsequently translated back into Sinhala. Augmented data was
re-evaluated to compare the original text with augmented text.
Text that was augmented with a wrong meaning was manually
corrected. Python translation was used in the translation
process and the resulting text was written to a Microsoft Excel
sheet. The augmented text and the text used to create
augmented text were included only in the training dataset and
for the testing, separate set of text were used. Following the
augmentation, we achieved 8,907 as the size of our final
dataset.

3) Data/Text Cleaning:

Text cleaning process in this study consists of several steps
including removing Pali text, adding white spaces, removing
names, and modifying characters. Pali text is a Middle Indo-
Aryan language mainly used in Theravada-Buddhism.
Buddhist monks in Sri Lanka use this language to chant
prayers. Pali text included in most Buddhist posts was removed
from the dataset. Usually, punctuations follow a white space in
professional writing; however, the standard rules are not
followed in most amateur posts. The tokenization process
returns a different output when white spaces are not included
in the correct places. Therefore, regular expressions were used
to make sentences accurate.

In Sinhala alphabet, න, ණ, ල, and ළ are consonants. න and ණ,
as well as ල and ළ have the same sound. Although the letters
have the same sound, they cannot be used interchangeably.

However, people who speak the language use these letters
interchangeably due to a lack of knowledge of using them. It is
difficult to memorize the places where these letters are used.
Hence, these two letters are misused in Sinhala writing and in
image posts. That is, න is used in cases where the letter ණ is
expected, and vice versa. Similarly, ල is used in cases where
the letter ළ is expected and vice versa. Therefore, all the text,
including ළ, was modified to ල, and all the text, including ණ,
was modified to න.

4) Data/Text Pre-processing:

Data/Text pre-processing is followed by a series of steps such
as tokenization, removal of numbers and punctuations, stop
words and stem words, text transliteration and dataset splitting.

The first step of text pre-processing is to split the text from
white spaces. The split texts are called tokens. The research was
conducted with “word_tokenize” in the natural language toolkit
(NLTK) and “SinhalaTokenizer” from “sinling” [56].

Numbers and punctuation were removed from the dataset. Stop
words and stem words prominently used in the Sinhala
language were filtered out. Stop words such as ඒ, ෙ�, න�, ඇ�,
එක, කර, හා, නෑ, වන, , ද, බව, ගැන, කර%, අතර, යන, ෙලස,
*සා are used. English meaning of these words respectively is
“That, this, if, one, done, and, no, is, was, the, that, about, does,
between, going, as, because”. Stem words such as මම, මට,
මටම, මට-, මෙ., මෙ.ම, මාෙ., මාෙග, මාව, මාවම, අ/, අ/ම,
අ/වම, අපට, අපටම, අපව, අපවම, අෙ1, අෙ1ම are filtered out.
“I, me, myself, mine, my own, we, ourselves, our” are the
English translations of stem words.

Python Unidecode function was employed to obtain the
transliterated text as a preprocessing step to check any
improvement in the performance [74]. Unicode characters are
fed into the Unidecode function and converted to ASCII
characters.

The training process commences by initially partitioning the
dataset into training and testing sets with a 4:1 ratio using the
scikit-learn command to split the data [46]. Subsequently, we
selected the models with higher results for further testing. In
the subsequent step, the dataset was partitioned into training,
validation, and testing subsets with 8:1:1 ratio. The selected
models underwent further evaluation with the updated dataset
partitioning. The PyTorch data loaders were created for
training, validation, and testing datasets. For the unsupervised
training process, the training set consists only of nonviolent
images. A subset of nonviolent images from our new dataset
was selected as the training dataset. As for the validation and
testing datasets, 500 images from each category were selected.

B. Hardware, software, libraries, and technologies used.

PyTorch was used as the ML library and Jupyter Notebook as
the platform. Experiments were conducted on an Nvidia RTX
– 3090 64 GB server.

7

C. Evaluation metrics used in the research

Evaluation metrics used are accuracy, precision, recall, and
area under the ROC curve (roc_auc_score) [28]. The confusion
matrix is also used.

D. Unsupervised Learning

The dataset was used as it is to be fed into the unsupervised
learning algorithms. There are many algorithms under
unsupervised category. We have focused our study on
autoencoders. Autoencoder is an unsupervised learning
algorithm. The autoencoder architecture contains an encoder
and a decoder. When an image is fed to the encoder, the
decoder will attempt to regenerate the image. The loss function
of autoencoders is defined as the difference between the
original and the regenerated image (reconstruction loss).
Autoencoders are trained using a specific type (nonviolent) of
data, allowing them to learn patterns inherent within that
dataset. Trained autoencoder can regenerate the type of data it
has trained. If the type of data, we used in training is nonviolent
then the autoencoder will give a lower reconstruction loss for
nonviolent data in testing dataset, meaning that it recognized
the nonviolent images properly. The autoencoder is not trained
for violent images and unable to identify the pattern in violent
images; therefore, a higher reconstruction loss is expected.
Here, the autoencoder acted as an anomaly detection method
where violent images act as the anomalies.

After training an autoencoder, we fed the validation dataset
with both violent and nonviolent images to the trained
autoencoder, obtaining the reconstruction loss of the images in
the validation set. The reconstruction loss was acquired as a
vector. Subsequently, we utilized an SVM to classify the
reconstruction loss. Finally, the testing images were passed
through the trained autoencoder to obtain their reconstruction
loss as a vector. This vector was then fed into the trained SVM
to evaluate the performance.

A previous study has found that an autoencoder utilizing
GoogleNet transfer learning and convolutional layers give
better results for violent and nonviolent image recognition than
other autoencoders [20]. We have utilized the same
autoencoders proposed in [20] to evaluate the results on our
new dataset.

E. Supervised learning - Shallow learning

Before employing supervised learning-shallow learning on pre-
processed data, the feature extraction step needs to be
completed. For the feature extraction, feature engineering
techniques were used.

1) Feature engineering:

The text must be represented in a numerical format to feed text
to natural language processing (NLP) and ML algorithms; this
is known as feature engineering. The text can be represented
with a vector of numbers known as a vector space model.
Popular vector space models are BoW, TF-IDF, and one-hot
vector encoding. These models aim to obtain similar

representations for similar tokens of text. All three methods
have sparsity problems that are inefficient to handle in the
computer memory and out-of-vocabulary problems.
First, the vocabulary that contains all tokens in the corpus was
created. The vector size is |V| as V is the number of unique
tokens in the corpus. In one-hot encoding each token is
represented by a vector of length |V|, and a sentence is a
combination of all vectors of the tokens in the sentence. As
different sentences in the corpus have different lengths, vector
size varies with each other. One-hot encoding ignores the
similarity between words [66].

The order of words and context are not considered in BoW
representation, and it considers a sentence or a document as a
bag of words. Vocabulary is developed as in the one-hot
representation, and the number of occurrences of each word in
the sentence can be stored in the vector representation. BoW
does not represent each word as a vector; it represents the whole
document as a vector without considering the order of words.
This representation has a fixed length for all documents in the
corpus. Documents with similar words can be identified using
BoW, though different words with similar meanings cannot be
identified. Bag-of-n-grams can help obtain a semantic meaning
between words [66]. “Countvectorizer” function in scikit-learn
was used to implement the BoW method. TF-IDF is another
text representation method with two terms: TF explains the
importance of a word within a document, and IDF explains the
importance of the same word concerning other documents in
the corpus [66]. “TfidfVectorizer” in scikit-learn was used to
implement TF-IDF.

2) Classification Algorithms:

Encoded data were fed into ML algorithms such as SVM, LR,
NB, and RF. SVM computes the optimal hyperplane by
maximizing the margin between support vectors and LR
computes a line according to a sigmoid function [14, 38]. For
LR, Gradient descent or maximum likelihood can act as the
optimization algorithm [32, 51]. NB is based on the Bayes
theorem that assumes all features are independent (of each
other). NB is a generative algorithm where the posterior
probability is calculated with a model that implements a joint
distribution of X and Y. Equation 1 can be derived for the
Bayes classifier; it can be categorized as Gaussian or
multinomial, depending on the different distributions of
P(�� �⁄) [66].

P(� �⁄ � , … , �) α P
y�∏ P
�� �⁄ �	��� ------------ Equation 1

RF is a method that uses many uncorrelated decision trees to
make predictions. More accurate predictions are received when
each decision tree is independent of one another. RF
implements bootstrap aggregation (bagging) that results in a
crucial difference in the output by inputting a training set with
minor changes [9]. The scikit-learn library was used for
implementing shallow learning algorithms.

8

3) Sampling methods used in shallow algorithms

Although the data is divided into train and test, parameters in
algorithms can be tweaked to give better results for the test set.
A validation set was derived again from the train set to prevent
the situation. Having three sets as train, validation, and test
minimizes the data that can train the model. Cross validation,
stratified sampling (an extension of cross validation), and re-
sampling (a bootstrapping procedure) were used to solve the
problem. The training set is divided into K folds. K-1 folds
were used to train the model and the remaining Kth fold was
used to validate the model in cross-validation. The scikit-
learn’s “StratifiedKFold” was used in stratified sampling.
Stratified sampling is an extension of cross-validation that uses
stratified folds. Re-sampling that uses a bootstrapping method
selects a sample with a pre-defined sample size. The model was
trained on the selected sample and the model was tested on the
data, which is not selected for the sample. The process can be
repeated many times, and mean estimates can be obtained by
averaging the values over the number of samples.

F. Supervised learning - Deep learning

1) Text padding and vocabulary creation:

The training set was tokenized into words, and a vocabulary
was created for the training set. In the vocabulary, a unique ID
was assigned to each word. The maximum length of sentences
was selected depending on the number of tokens. Sentences
were padded depending on the difference between sentence
length and maximum length. The same vocabulary was used
for the test set and assigned with IDs. Unknown tokens were
assigned for words that were not in the vocabulary.

2) Feature engineering:

Pre-trained word embeddings were loaded after the vocabulary
creation and text padding. A matrix was implemented with
vocabulary size (as the row dimension) and embedding size (as
the column dimension). Subsequently, distributed
representations of text known as word2vec [40] and fastText
[8] were used as the embedding mechanisms for deep learning
algorithms. A Sinhala dataset created in previous research was
also used to create new embeddings in conjunction with a
random subset of the dataset collected in our research [48, 57].
However, the embedding models created using our dataset did
not perform well. Text that was converted using the Unidecode
library in Python and text without the conversion was also
applied to generate word2vec and fastText models. However,
by comparing the obtained accuracies, finally, pre-trained
embeddings obtained from previous research were used [16,
57].

3) Classification Algorithms:

1D CNN [64], LSTM [27], GRU [11], bidirectional LSTM
(BiLSTM) [24], and bidirectional GRU (BiGRU) [6] were
utilized as deep learning algorithms. Ensemble methods, 1D
CNN with LSTM, 1D CNN with GRU, 1D CNN with
BiLSTM, and 1D CNN with BiGRU were also tested to
evaluate the performance. Filter size, number of filters, number
of layers, optimization algorithms, and number of epochs were
modified to find the optimum result in 1D CNN. The size of the

hidden layer, number of layers, and number of epochs were
modified in the LSTM and GRU to find an optimum result. The
learning rate was reduced to prevent overfitting. The output of
1D CNN layers with different filter sizes as 2, 3, 4, 5, 7, and 11
were concatenated. Figure 4 shows the architecture of 1D
CNN. The output was sent through a fully connected layer to
obtain the final output.

In Ensemble architectures, output obtained in 1D CNN was fed
through recurrent models such as LSTM and GRU. The
ensemble model, which combines 1D CNN and GRU, is
depicted in Figure 5. Text with an embedding dimension 300 is
fed to the model. Three 1D CNN filters are used to extract the
features, followed by a max pooling layer. The outputs
obtained from the three filters are concatenated. The
concatenated output is reshaped and sent through a GRU layer.
The output obtained from GRU is fed to a fully connected layer,
resulting in the classification output.

Figure 4. 1D CNN architecture

Figure 5. CNN GRU architecture

The cross-lingual representation of robustly optimized BERT
pre-training approach (RoBERTa) (XLM-R) XLM-R was used
as the BERT architecture, which is trained for 100 different
languages and Sinhala is also included in these 100 languages
[17]. Cross-lingual language model (XLM) was introduced to
support 100 languages [13]. XLM uses Byte-Pair Encoding
(BPE) to gain the sharing capability. In BPE, frequently used
sub-word pairs are merged so they can easily represent an
unknown word with sub-words that are already in the
vocabulary. XLM-R, which works similarly to XLM, was
trained according to the RoBERTa; RoBERTa uses a masked
language model (MLM). The model was trained for the training
set using “AdamW” optimization function and tested with a test
set. The Hugging Face library which was implemented using
PyTorch helped to access BERT interfaces [71]. The dataset in
XLM-R was loaded and tokenized using a sentence piece
tokenizer. All BERT algorithms expect sentences in the corpus
to be tokenized in a distinct format. XLM-R requires similar
formatting. The three special tokens used in BERT architecture
are [CLS] as the classifier, [SEP] as the separator, and [PAD]

9

as the padding. In XLM-R, the main tokens are <s> to indicate
the beginning of a sequence, <\s> to indicate the separation of
sequences and the end of a sequence, and <pad> as the padding.
The method “encode_plus” returns the padded token list and
attention mask. Attention mask indicates the separation
between real tokens and padded tokens.
“XLMRobertaTokenizer” was used as the tokenizer, and the
“XLMRobertaForSequenceClassification” model was defined
as the model for XLM-R [71].

With these deep learning techniques, early stopping was used
as a promising technique to avoid overfitting and to find the
most suitable model [47, 62].

G. Explainable AIs

Most ML models are black boxes; hence inner workings are not
visible. Therefore, LIME and SHAP were used to describe the
decisions taken by the black boxes [50, 33]. Using graphical
pictures and details provided by the explainable APIs, texts that
influenced the decision of the ML algorithms can be identified.
‘LIME’ model is a local approximation of the ML model. An
instance in the dataset was selected, and the sample size in the
LIME was initialized. The default sample size is 5,000, and
better results can be obtained as the sample size increases.
According to the sample size, the instance was perturbed by
removing some of the tokens in the instance to create a sample.
The sample obtained by perturbation was inputted to a custom
prediction function that uses the trained ML model to calculate
the prediction probability of each perturbation. The weights of
the perturbed instances are calculated depending on the
proximity to the original instance. LIME outputs the weights of
each feature which helps to get a view of which features caused
the decision given by the ML model. SHAP is based on game
theory, and all features act as players in the game. SHAP
calculates the average marginal contribution of a feature
regarding all possible coalitions. Other than LIME and SHAP,
IG is also used to describe deep learning models [61]. IG
calculates the gradients of the output to its features. Initially, an
instance was selected. The instance is interpolated starting from
a baseline model. Then the gradient is calculated to check the
changes in the features to the model prediction.

IV. RESULTS AND DISCUSSION

Here we present the obtained results for different ML
algorithms we used, to identify hate speech related images.
First, we will present the results of unsupervised learning
algorithms, then shallow supervised learning algorithms and
finally the results of deep learning algorithms.

A. Results of unsupervised learning algorithms

Table 1 presents the results for the autoencoders using the
dataset mentioned in Section III A. Autoencoder with
convolutional layers have shown better results than other
autoencoders.

Table 1. Results for autoencoders
Model Accuracy Precision Recall F1 Score

GoogLeNet 0.657 0.6599 0.657 0.6555

Convolutional 0.727 0.7304 0.727 0.726

B. Results of supervised learning algorithms

Here, first we present the results of shallow ML algorithms,
classifying the images using the text in the images. Results of
shallow and deep ML algorithms were obtained using two main
methods: using popular performance metrics and using
explainable AI methods.

1) Results of shallow ML algorithms using performance

metrics:

Using popular performance metrics for NB and LR algorithms,
accuracy of the results was low, for one hot encoding feature
extraction method, compared to other methods such as BoW
and TF-IDF (see Table 2).

Table 2. Accuracy of one-hot encoding for NB and LR
 Classification Method

 NB LR

Accuracy 0.685 0.69

Initially, computations were performed on a dataset comprising
1,000 violent and 1,000 nonviolent images. Subsequently, the
dataset size was expanded, and augmentation techniques were
applied to further increase its size. Table 3 provides the results
of different performance metrics for TF-IDF embedding for
shallow algorithms; MNB, LR, SVM and RF before expanding
the dataset in Unidecode format. Table 4 presents results after
expanding the dataset but without augmentation and Unidecode
format. Table 5 depicts the results of different performance
metrics for the augmented and in Unidecode format. Table 6
describes the results of the BoW embedding with Unidecode
and augmented data, and Table 7 describes the results for
Unidecode and increased dataset but before the augmentation.
According to these tables, NB classification has obtained
higher results than other classification algorithms, RF showed
lower results, and TF-IDF and BoW have obtained comparable
results. The conversion of text to Unidecode format and
expansion of the dataset has led to a noticeable improvement in
the results. 91% accuracy was obtained for TF-IDF, BoW with
NB classifier. The results of the BoW were slightly higher than
TF-IDF.

Table 3. TF-IDF results before increasing the dataset but with
Unidecode data

Metrics Classification Methods

MNB LR SVM RF

Accuracy 0.8725 0.875 0.875 0.6575

roc_auc_score 0.9578 0.9477 0.9464 0.7433

10

F1 0.8771 0.8775 0.878 0.5387

Precision 0.8505 0.8647 0.8612 0.8333

Recall 0.9055 0.8905 0.8955 0.398

Table 4. TF-IDF results after increasing the dataset but without

Unidecode and augmented data
Metrics MNB LR SVC RF

Accuracy 0.829 0.8261 0.8217 0.7878

Precision 0.7851 0.8318 0.8125 0.7956

F1 0.8332 0.8159 0.8155 0.7735

Recall 0.8876 0.8006 0.8186 0.7526

ROC_AOC_Score 0.9238 0.9055 0.9074 0.8696

Table 5. TF-IDF results for the augmented and Unidecode dataset

Metrics MNB LR SVC RF

Accuracy 0.9074 0.8953 0.8961 0.813

Precision 0.8784 0.899 0.8925 0.8414

F1 0.9075 0.8908 0.8925 0.7962

Recall 0.9385 0.8827 0.8925 0.7556

ROC_AOC_Score 0.9721 0.9628 0.9601 0.8967

Further we have used NB as the classification algorithm with
different sampling techniques and obtained the performance
metrics (see Table 8). MNB with the BoW method has obtained
better results for all the metrics in cross-validation (k-fold and
stratified). However, employing cross-validation did not
improve the previous result. Results depict that k-fold and
stratified sampling have higher results than resampling.

2) Results of shallow ML algorithms using explainable

methods:

We have used two text examples to describe the results
obtained for XAI methods in shallow learning. Preprocessed
and Unidecode text of Sentences 1 and 2 are shown in Table 9.
Figure 6 and Figure 7 depict the LIME and SHAP outputs of
sentence 1.

Table 6. BoW results for the augmented and Unidecode dataset
Metrics Classification Methods

MNB LR SVM RF

Accuracy 0.9163 0.8875 0.8534 0.815

roc_auc_score 0.9735 0.9536 0.9323 0.8927

F1 0.915 0.881 0.8462 0.7991

Precision 0.8914 0.9106 0.8634 0.8515

Recall 0.9399 0.8534 0.8296 0.7528

Table 7. BoW results for the Unidecode dataset but without the
augmentation

Metrics Classification Methods

MNB LR SVM RF

Accuracy 0.9047 0.8732 0.8532 0.8381

F1 0.9026 0.8655 0.8453 0.8236

Precision 0.8825 0.8931 0.8639 0.8805

Recall 0.9235 0.8396 0.8276 0.7736

Table 8. Results of MNB classification for sampling methods with

Unidecode and augmented data

Embeddi

ng

Sampling Accuracy F1 Precision Recall

BoW k-fold 0.91 0.911 0.884 0.940

TF-IDF k-fold 0.91 0.893 0.867 0.921

BoW Stratified 0.91 0.903 0.85 0.956

TF-IDF Stratified 0.91 0.913 0.889 0.939

BoW Resampling 0.862 0.867 0.846 0.889

TF-IDF Resampling 0.862 0.865 0.860 0.871

Figure 6. LIME results for sentence 1 - Shallow learning

Figure 7. SHAP results for sentence 1 - Shallow learning.

LIME output with BoW as the embedding and NB as the
classification algorithm has found Sinhala words ඝාතන

(killings), සහාය (supported), අ7ලාහ්ට (Allah), 9ස්තෙය:

(terrorists), and සාමෙ; (peace) caused to conclude that
sentence 1 as violent. Sentence 2 can be identified as
nonviolent. Violent words are highlighted (orange) in the text.
Although Sinhala words සහාය (supported) and සාමෙ; (peace)
are nonviolent words, they were identified as violent. Orange
colour indicates violent words, and others are nonviolent
words.

11

3) Results of deep learning algorithms using performance

metrics:

Table 10 presents the Sinhala text classification results using
deep learning algorithms. The results were analysed with and
without data augmentation. The presented outcomes are the
best possible outputs obtained under different conditions:
learning rate and number of epochs. Superior results were
obtained for 1D CNN with a learning rate of 0.002. The
learning rate was chosen as 0.000001 for other algorithms like
LSTM and GRU. The GRU with CNN ensemble models (250
epochs) converge to a solution within fewer numbers of epochs
than the CNN models (450 epochs).
XLM-R was evaluated for 500, 700 and 1,000 epochs with a
learning rate of 0.000001, obtaining 93% accuracy, which is
better than that of other models. XLM-R achieved over 90%
for precision, recall, and F1-score, also outperforming other

models. Subsequently, the GRU and CNN ensemble model,
incorporating word2vec achieved 91% accuracy. Similarly,
CNN with BiGRU utilizing word2vec, 1D CNN with word2vec
and 1D CNN with fastText achieved 90% accuracy. In the
context of 1D CNN, fastText with 300 embedding dimensions
showed better results than word2vec embedding. Figure 8
illustrates the confusion matrix of XLM-R.

Figures 9 and 10 depict the loss and accuracy curves of nine
deep learning models, respectively. CNN with GRU and CNN
with BiGRU that incorporate word2vec, exhibit lower loss than
LSTM and CNN models. Furthermore, CNN with GRU,
incorporating word2vec, exhibit higher accuracy compared to
other models.

Table 9. Sinhala text examples

Sentence

No.

Text English Translation Preprocessed

Text

Unidecode Text

Sentence
1

ෙ� ඝාතන
වලට සහාය <=
අ7ලාහ්ට ස්>�% !
අ% එස් 9ස්තෙය:
?ය%. සාමෙ;
ආගම ෙමය ද?

Thanks to Allah, who
supported these killings! IS
terrorists say. Is this the
religion of peace?

ඝාතන (killing)
සහාය (support)
අ7ලාහ්ට (Allah)
ස්>�% (thanks)
එස් (IS) 9ස්තෙය: (terrorists) සාමෙ; (peace)

ghaatn shaay allaahtt stutiyi es
trstyoo saamyeet

Sentence
2

ෙඔB ෙගල වටා
පැළCය හැ?
ෙහාඳම ආභරණය
ව=ෙ= ඔෙB
දFව=ෙ. දෑත%

The best jewelry you can wear
around
your neck is your children’s
arms

ෙගල (neck)
වටා (around)
පැළCය (wear)
ෙහාඳම (best)
ආභරණය (jewelry) දFව=ෙ. (children’s) දෑත%
(arms)

gel vttaa paellndiy hondm
aabhrnny druvngee daaetyi

Sentence
3

ෙබෟHධ%=ට තJ
ෙනාබා ෙද/ල
ෙබK මරාග=නා
අ=තවාK Lස්M�
ක7M මJN.
9ස්තවාදයට
*දහෙස්
වැෙඩ=නට ඉඩK
බලා QR=ෙ=
ෙ� රට තව-
ඉරාකයS
ෙවන>Fද?
ෙබෟHධ
අ=තවාදයS ගැන
ෙබාF ෙBග7 ඇද
ෙනාබා Lස්M�
අ=තවාදය ගැන
ඇ-ත /Tග=න.

Instead of punishing
Buddhists, stop
extremist Muslim gangs
who
divide and kill. Are they
allowing terrorism
to grow freely
and waiting for this country
to become another Iraq?
Accept
the truth about Muslim
extremism without
pulling false
stories about
Buddhist extremism.

ෙබෟHධ%=ට
(Buddhists) තJ
(punish) ෙනාබා
(not) ෙද/ල
(two groups)
ෙබK (divide)
මරාග=නා
(killing) අ=තවාK (extremist)
Lස්M� (muslim)
ක7M (gang)
මJN (stop).
9ස්තවාදයට
(terrorism)
*දහෙස් (freely)
වැෙඩ=නට
(grow) ඉඩK
(let) QR=ෙ=
(waiting)
ඉරාකයS (Iraq)
ෙවන>Fද (until)
ෙබාF (false)
ෙBග7 (stories)
ඇද ෙනාබා
(without telling)
Lස්M� (muslim)
අ=තවාදය(extremism) ඇ-ත (truth) /Tග=න (accept)

bauddhyintt tddi nobaa depil
bedii mraagnnaa antvaadii
muslim klli mddinu.
trstvaadytt nidhsee vaeddenntt
idddii blaa sittinnee mee rtt tvt
iraakyk venturud? bauddh
antvaadyk gaen boru beegl aed
nobaa muslim antvaady gaen aett
pillignn.

12

Table 10. Results of deep learning algorithms in text classification

Method Augmentation1 Accuracy Precision F1 Recall

CNN+word2vec 300 2 No 0.9033 0.8791 0.9022 0.9265

CNN+BiGRU+word2vec 300 No 0.8788 0.8855 0.8776 0.8763

CNN+BiGRU+word2vec 300 Yes 0.9041 0.9055 0.9038 0.9032

CNN+GRU+word2vec 300 No 0.8925 0.8926 0.8923 0.8921

BiGRU+word2vec 300 No 0.8911 0.8909 0.8911 0.8914

BiLSTM+word2vec 300 No 0.8853 0.8852 0.8851 0.885

CNN+BiLSTM+word2vec
300

No 0.8889 0.8892 0.8889 0.8897

GRU+word2vec 300 No 0.8939 0.8941 0.8937 0.8935

LSTM+word2vec 300 No 0.8853 0.8874 0.8847 0.8839

CNN+LSTM+word2vec
300

No 0.8918 0.8918 0.8916 0.8914

CNN+word2vec 300 Yes 0.9001 0.8586 0.9019 0.9497

CNN+GRU+word2vec 300 Yes 0.9136 0.9137 0.9134 0.9132

BiGRU+word2vec 300 Yes 0.8987 0.8986 0.8987 0.8989

GRU+word2vec 300 Yes 0.898 0.8988 0.8978 0.8973

CNN+fastText 300 Yes 0.9048 0.9044 0.9012 0.898

BiGRU+fastText 300 Yes 0.8872 0.8871 0.8871 0.8872

CNN+GRU+fastText 300 Yes 0.8899 0.8898 0.8898 0.8899

GRU+fastText 300 No 0.8687 0.8691 0.8683 0.868

CNN+fastText 300 No 0.8788 0.8833 0.8725 0.8621

BiGRU+fastText 300 No 0.8687 0.8685 0.8685 0.8684

CNN+GRU+fastText 300 No 0.8874 0.8873 0.8873 0.8872

CNN+fastText 450 Yes 0.898 0.9088 0.8927 0.8771

CNN+GRU+fastText 450 3 Yes 0.896 0.8965 0.8958 0.8955

XLM-R Yes 0.9203 0.9118 0.9182 0.9245

XLM-R No 0.93 0.9371 0.9265 0.916

1 Augmentation: Yes - Refers to the dataset containing augmented data. No - Refers to the dataset without any augmentation.
2 CNN stands for 1D CNN. 300 represents the embedding dimension. The “+” sign signifies the fusion of the “CNN” algorithm and the
“word2vec” embedding mechanism with 300 embedding dimensions.
3 450 represents the embedding dimension.

Figure 8. Confusion matrix of

XLM-R

13

Figure 9. The loss of the model incurred on the test data.

Figure 10. The accuracy achieved on the test data.

Table 11 presents the performance results of 1D CNN, CNN,
and GRU ensemble model, as well as the XLM-R models after
partitioning the dataset into train, validation, and test subsets.
The results depict that the XLM-R model achieved superior
results compared to the 1D CNN and GRU ensemble model.

Table 11. Performance results on different dataset splits

 Accuracy Precision Recall F1-score

fastText + 1D CNN 0.8862 0.9024 0.8626 0.8821

word2vec + CNN + GRU 0.8977 0.8992 0.8973 0.8975

XLM-R 0.93 0.94 0.91 0.92

3) Results of deep learning algorithms using explainable

methods:

Sentences 1, 2, and 3, as depicted in Table 10, are utilized in
the context of deep learning. Sentences 1 and 3 are identified
as violent, whereas Sentence 2 is identified as nonviolent.
Violent words identified by LIME using CNN, and GRU
ensemble are හ�බෙයා (similar word for Muslims), අ-අඩංVවට

(arrested), මරනයට (to death), නW=සකෙය: (eu nuchs), ෙහාර

(fake), උHෙඝ:ෂණයS (campaign), පගාව (revenge), Zනාශ

(destruction), \] ජාවාරෙ� (drug dealing), Lස්M� (Muslim),
9ස්ත (terror), _ෂනය (corruption), ඉස්ලාමෙ; (Islam),
අ=තවාදය (extremism), ෙBබ< (drunkenness), බැනල (scolded),
ෙහාF (thieves), අවජාතක (bastards), වංචාව (fraud), /M\ෙල=

(disgusted), බa (dogs), b�ය (law), Lස7මාNව=ට (similar
word for Muslims), හලා7 (Halal), \]කාරෙය: (drug addicted),
addicted), අ=තවාK= (extremists), ෙහාරකං (thieves), and
මාcd (caught). The identified nonviolent words are, ආදෙර=

(with love), ඉවeම (patience), fෙ- (heart), බැgම?= (bond),
Qනහවට (smile), කha (tears), පැලCය (dress), ෙහාඳම (best),
දFව=ෙ. (children’s), ෙගල (neck), ස>R= (happy),

ෙදමා/ය= (parents), and මානQක (mental). Although some
nonviolent words were identified as violent in Sentence 1 and
Sentence 2 by shallow machine learning, in deep learning they
were identified correctly. Figure 11 and Figure 12 show the
LIME output of Sentence 1 and Sentence 2 respectively.

Figure 11. LIME results for sentence 1 using deep learning.

Figure 12. LIME results for sentence 2 using deep learning.

SHAP has produced slightly different results than LIME.
Figure 13 shows sentence 1. The red colour indicates violent
words. According to the figure, සාමෙ; (peace) is identified as
a violent word.

Figure 13. SHAP output of sentence 1

IG and LIME have produced different outputs. Red and green
colors indicate violent and nonviolent words, respectively.
Figure 14 shows sentences 1 and 2 for IG. According to
thoutput, sentence 1 is identified as nonviolent (the predicted
label is 0). Violent words are not highlighted in the text either.

Figure 14. IG results for sentences 1 and 2

V. CONCLUSION

In the context of classifying images posted based on hate
speech, unsupervised learning algorithms achieved 73%
accuracy. Increased dataset size, along with characters encoded
using Unidecode, has resulted in a 92% accuracy for shallow
machine learning algorithms. Comparable results were
obtained for BoW and TF-IDF, with slightly higher results for
BoW. Models that employ GRU have achieved 91% accuracy.
Models with 1D CNN achieved 90% accuracy, and the XLM-
R algorithm obtained 93% accuracy. RNN architectures that
employ LSTM have shown lower results than models that
incorporate GRU and 1D CNN. However, LSTM with the
CNN model obtained 89% accuracy.

14

In most cases, data augmentation has improved the results of
models employing the GRU architecture. Among the models
that employ GRU, slightly better results have been obtained for
word2vec than for fastText. LIME has shown better
interpretation than SHAP and IG. Supervised learning of text
classification produced better results than unsupervised
learning for identifying violent Sinhala image posts. This
research can be further enhanced by extracting the text from
image posts automatically using a text extraction method.

REFERENCES

[1] Aggarwal C.C., Sathe S.: Theoretical foundations and

algorithms for outlier ensembles. In: Acm sigkdd explorations

newsletter, vol. 17(1), pp. 24--47, 2015.

[2] Aktı S., Ofli F., Imran M., Ekenel H.K.: Fight detection from

still images in the wild. In: Proceedings of the IEEE/CVF winter

conference on applications of computer vision, pp. 550--559. 2022.

[3] Amorim M., Bortoloti F.D., Ciarelli P.M., Salles E.O., Cavalieri

D.C.: Novelty detection in social media by fusing text and image into

a single structure. In: IEEE Access, vol. 7, pp. 132786--132802, 2019.

[4] Amos B., Ludwiczuk B., Satyanarayanan M., et al.: Openface:

A general-purpose face recognition library with mobile applications.

In: CMU School of Computer Science, vol. 6(2), p. 20, 2016.

[5] Badjatiya P., Gupta S., Gupta M., Varma V.: Deep learning for

hate speech detection in tweets. In: Proceedings of the 26th

international conference on World Wide Web companion, pp. 759--

760. 2017.

[6] Bharti: Sentimental with Multi Layer Bi directional RNN using

PyTorch, 2020. URL {https://medium.com/@bhartikukreja2015/

sentimental-with-multi-layer-bi-directional-rnn-using-pytorch-

4f386297a0fc}.

[7] Blandfort P., Patton D.U., Frey W.R., Karaman S., Bhargava S.,

Lee F.T., Varia S., Kedzie C., Gaskell M.B., Schifanella R., et al.:

Multimodal social media analysis for gang violence prevention. In:

Proceedings of the International AAAI conference on web and social

media, vol. 13, pp. 114--124. 2019.

[8] Bojanowski P., Grave E., Joulin A., Mikolov T.: Enriching

word vectors with subword information. In: Transactions of the

association for computational linguistics, vol. 5, pp. 135--146, 2017.

[9] Breiman L.: Random forests. In: Machine learning, vol. 45, pp.

5--32, 2001.

[10] Chhabra A., Vishwakarma D.K.: A literature survey on

multimodal and multilingual automatic hate speech identification. In:

Multimedia Systems, pp. 1--28, 2023.

[11] Chung J., Gulcehre C., Cho K., Bengio Y.: Empirical

evaluation of gated recurrent neural networks on sequence modeling.

In: arXiv preprint arXiv:1412.3555, 2014.

[12] Cohen J.: A coefficient of agreement for nominal scales. In:

Educational and psycho logical measurement, vol. 20(1), pp. 37--46,

1960.

[13] Conneau A., Lample G.: Cross-lingual language model

pretraining. In: Advances in neural information processing systems,

vol. 32, 2019.

[14] Cramer J.S.: The origins of logistic regression. In: , 2002.

[15] Davidson T., Warmsley D., Macy M., Weber I.: Automated

hate speech detection and the problem of offensive language. In:

Proceedings of the international AAAI conference on web and social

media, vol. 11, pp. 512--515. 2017.

[16] Demotte P., Senevirathne L., Karunanayake B., Munasinghe

U., Ranathunga S.: SEN CAT Tool for Sinhala Sentiment Analysis,

2020. URL https://sencat.lk/.

[17] Devlin J., Chang M.W., Lee K., Toutanova K.: Bert: Pre-

training of deep bidirectional transformers for language

understanding. In: arXiv preprint arXiv:1810.04805, 2018.

[18] Dhananjaya V., Demotte P., Ranathunga S., Jayasena S.:

BERTifying Sinhala--A Comprehensive Analysis of Pre-trained

Language Models for Sinhala Text Classification. In: arXiv preprint

arXiv:2208.07864, 2022.

[19] Dias D.S., Welikala M.D., Dias N.G.: Identifying racist social

media comments in sinhala language using text analytics models with

machine learning. In: 2018 18th International Conference on

Advances in ICT for Emerging Regions (ICTer), pp. 1--6. IEEE, 2018.

[20] Dikwatta U., Fernando T.: Violence Detection of Sinhala

Image Posts with Autoencoders. In: 2021 10th International

Conference on Information and Automation for Sustainability

(ICIAfS), pp. 275--280. IEEE, 2021.

[21] Djuric N., Zhou J., Morris R., Grbovic M., Radosavljevic V.,

Bhamidipati N.: Hate speech detection with comment embeddings. In:

Proceedings of the 24th international conference on world wide web,

pp. 29--30. 2015.

[22] Edunov S., Ott M., Auli M., Grangier D.: Understanding back-

translation at scale. In: arXiv preprint arXiv:1808.09381, 2018.

[23] Fortuna P., Nunes S.: A survey on automatic detection of hate

speech in text. In: ACM Computing Surveys (CSUR), vol. 51(4), pp.

1--30, 2018.

[24] Graves A., Schmidhuber J.: Framewise phoneme classification

with bidirectional LSTM and other neural network architectures. In:

Neural networks, vol. 18(5-6), pp. 602--610, 2005.

[25] Haque R., Islam N., Tasneem M., Das A.K.: MULTI-CLASS

SENTIMENT CLASSIFICATION ON BENGALI SOCIAL MEDIA

COMMENTS USING MACHINE LEARNING. In: International

Journal of Cognitive Computing in Engineering, 2023.

[26] He K., Gkioxari G., Dollár P., Girshick R.: Mask r-cnn. In:

Proceedings of the IEEE international conference on computer vision,

pp. 2961--2969. 2017.

[27] Hochreiter S., Schmidhuber J.: Long short-term memory. In:

Neural computation, vol. 9(8), pp. 1735--1780, 1997.

[28] Hossin M., Sulaiman M.N.: A review on evaluation metrics

for data classification evaluations. In: International journal of data

mining & knowledge management process, vol. 5(2), p. 1, 2015.

[29] Jallad K.A., Ghneim N.: ArNLI: Arabic Natural Language

Inference for Entailment and Contradiction Detection. In: arXiv

preprint arXiv:2209.13953, 2022.

[30] Kaplan A.M., Haenlein M.: Users of the world, unite! The

challenges and opportunities of Social Media. In: Business horizons,

vol. 53(1), pp. 59--68, 2010.

[31] Le Q., Mikolov T.: Distributed representations of sentences

and documents. In: International conference on machine learning, pp.

1188--1196. PMLR, 2014.

15

[32] Le Cam L.: Maximum likelihood: an introduction. In:

International Statistical Review/Revue Internationale de Statistique,

pp. 153--171, 1990.

[33] Lundberg S.M., Lee S.I.: A unified approach to interpreting

model predictions. In: Advances in neural information processing

systems, vol. 30, 2017.

[34] Malik J.S., Pang G., Hengel A.v.d.: Deep learning for hate

speech detection: a comparative study. In: arXiv preprint

arXiv:2202.09517, 2022.

[35] Malmasi S., Tetreault J., Dras M.: Oracle and human baselines

for native language identification. In: Proceedings of the tenth

workshop on innovative use of NLP for building educational

applications, pp. 172--178. 2015.

[36] Malmasi S., Zampieri M.: Detecting hate speech in social

media. In: arXiv preprint arXiv:1712.06427, 2017.

[37] Mazari A.C., Boudoukhani N., Djeffal A.: BERT-based

ensemble learning for multi aspect hate speech detection. In: Cluster

Computing, pp. 1--15, 2023.

[38] Meyer D., Wien F.: Support vector machines. In: The Interface

to libsvm in package e1071, vol. 28, p. 20, 2015.

[39] Mikolov T., Chen K., Corrado G., Dean J.: Efficient estimation

of word representations in vector space. In: arXiv preprint

arXiv:1301.3781, 2013.

[40] Mikolov T., Chen K., Corrado G., Dean J.: Efficient estimation

of word representations in vector space. In: arXiv preprint

arXiv:1301.3781, 2013.

[41] Mozafari M., Farahbakhsh R., Crespi N.: A BERT-based

transfer learning approach for hate speech detection in online social

media. In: Complex Networks and Their Applications VIII: Volume 1

Proceedings of the Eighth International Conference on Complex

Networks and Their Applications COMPLEX NETWORKS 2019 8,

pp. 928--940. Springer, 2020.

[42] Naher J., Minar M.R.: Impact of social media posts in real life

violence: A case study in Bangladesh. In: arXiv preprint

arXiv:1812.08660, 2018.

[43] Omar A., Mahmoud T.M., Abd-El-Hafeez T.: Comparative

performance of machine learning and deep learning algorithms for

Arabic hate speech detection in osns. In: Proceedings of the

International Conference on Artificial Intelligence and Computer

Vision (AICV2020), pp. 247--257. Springer, 2020.

[44] Omar A., Mahmoud T.M., Abd-El-Hafeez T., Mahfouz A.:

Multi-label arabic text classification in online social networks. In:

Information Systems, vol. 100, p. 101785, 2021.

[45] Orru P., et al.: Racist discourse on social networks: A

discourse analysis of Facebook posts in Italy. In: Rhesis, vol. 5(1), pp.

113--133, 2015.

[46] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion

B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et

al.: Scikit-learn: Machine learning in Python. In: the Journal of

machine Learning research, vol. 12, pp. 2825--2830, 2011.

[47] Prechelt L.: Early stopping-but when? In: Neural Networks:

Tricks of the trade, pp. 55--69. Springer, 2002.

[48] Ranathunga S., Liyanage I.U.: Sentiment analysis of sinhala

news comments. In: Transactions on Asian and Low-Resource

Language Information Processing, vol. 20(4), pp. 1--23, 2021.

[49] Rathnayake H., Sumanapala J., Rukshani R., Ranathunga S.:

Adapter-based fine-tuning of pre-trained multilingual language

models for code-mixed and code-switched text classification. In:

Knowledge and Information Systems, vol. 64(7), pp. 1937--1966,

2022.

[50] Ribeiro M.T., Singh S., Guestrin C.: ̀ `Why should i trust you?''

Explaining the predictions of any classifier. In: Proceedings of the

22nd ACM SIGKDD international conference on knowledge

discovery and data mining, pp. 1135--1144. 2016.

[51] Ruder S.: An overview of gradient descent optimization

algorithms. In: arXiv preprint arXiv:1609.04747, 2016.

[52] Ruwandika N., Weerasinghe A.: Identification of hate speech

in social media. In: 2018 18th international conference on advances in

ICT for emerging regions (ICTer), pp. 273- -278. IEEE, 2018.

[53] Samarasinghe S., Meegama R., Punchimudiyanse M.:

Machine learning approach for the detection of hate speech in sinhala

unicode text. In: 2020 20th International Conference on Advances in

ICT for Emerging Regions (ICTer), pp. 65--70. IEEE, 2020.

[54] Sandaruwan S.T., Lorensuhewa S.A.S., Munasinghe K.:

Identification of abusive sinhala comments in social media using text

mining and machine learning techniques. In: The International Journal

on Advances in ICT for Emerging Regions, vol. 13(1), 2020.

[55] Schmidt A., Wiegand M.: A survey on hate speech detection

using natural language processing. In: Proceedings of the fifth

international workshop on natural language processing for social

media, pp. 1--10. 2017.

[56] Senarath Y.: A language processing tool for Sinhalese, 2004.

URL https://sinling. ysenarath.com/.

[57] Senevirathne L., Demotte P., Karunanayake B., Munasinghe

U., Ranathunga S.: Sentiment analysis for sinhala language using deep

learning techniques. In: arXiv preprint arXiv:2011.07280, 2020.

[58] Shorten C., Khoshgoftaar T.M.: A survey on image data

augmentation for deep learning. In: Journal of big data, vol. 6(1), pp.

1--48, 2019.

[59] Silva E., Nandathilaka M., Dalugoda S., Amarasinghe T.,

Ahangama S., Weerasuriya G.T.: Machine Learning-Based

Automated Tool to Detect Sinhala Hate Speech in Images. In: 2021

6th International Conference on Information Technology Research

(IC ITR), pp. 1--7. IEEE, 2021.

[60] Sun S., Liu Y., Mao L.: Multi-view learning for visual violence

recognition with maximum entropy discrimination and deep features.

In: Information Fusion, vol. 50, pp. 43--53, 2019.

[61] Sundararajan M., Taly A., Yan Q.: Axiomatic attribution for

deep networks. In: International conference on machine learning, pp.

3319--3328. PMLR, 2017.

[62] Sunde B.M.: Early Stopping for PyTorch, 2020. URL

https://github.com/ Bjarten/early-stopping-pytorch.

[63] Suryawanshi S., Chakravarthi B.R., Arcan M., Buitelaar P.:

Multimodal meme dataset (MultiOFF) for identifying offensive

content in image and text. In: Proceedings of the second workshop on

trolling, aggression and cyberbullying, pp. 32--41. 2020.

[64] Tran C.: A Complete Guide to CNN for Sentence

Classification with PyTorch, 2020. URL

https://chriskhanhtran.github.io/posts/ cnn-sentence-classification/.

16

[65] Uppada S.K., Patel P.: An image and text-based multimodal

model for detecting fake news in OSN?s. In: Journal of Intelligent

Information Systems, pp. 1--27, 2022.

[66] Vajjala S., Majumder B., Gupta A., Surana H.: Practical

natural language processing: a comprehensive guide to building real-

world NLP systems. O'Reilly Media, 2020.

[67] Waseem Z., Hovy D.: Hateful symbols or hateful people?

predictive features for hate speech detection on twitter. In:

Proceedings of the NAACL student research workshop, pp. 88--93.

2016.

[68] Waseem Z., Thorne J., Bingel J.: Bridging the gaps: Multi task

learning for domain transfer of hate speech detection. In: Online

harassment, pp. 29--55, 2018.

[69] Watanabe H., Bouazizi M., Ohtsuki T.: Hate speech on twitter:

A pragmatic approach to collect hateful and offensive expressions and

perform hate speech detection. In: IEEE access, vol. 6, pp. 13825--

13835, 2018.

[70] Webb G.I.: Decision tree grafting from the all-tests-but-one

partition. In: Ijcai, vol. 2, pp. 702--707. 1999.

[71] Wolf T., Debut L., Sanh V., Chaumond J., Delangue C., Moi

A., Cistac P., Rault T., Louf R., Funtowicz M., Davison J., Shleifer S.,

von Platen P., Ma C., Jernite Y., Plu J., Xu C., Scao T.L., Gugger S.,

Drame M., Lhoest Q., Rush A.M.: HuggingFace's Transformers:

State-of-the-art Natural Language Processing, 2019. URL

http://dx.doi.org/10. 48550/ARXIV.1910.03771.

[72] Won D., Steinert-Threlkeld Z.C., Joo J.: Protest activity

detection and perceived violence estimation from social media

images. In: Proceedings of the 25th ACM international conference on

Multimedia, pp. 786--794. 2017.

[73] Zhang Z., Luo L.: Hate speech detection: A solved problem?

the challenging case of long tail on twitter. In: Semantic Web, vol.

10(5), pp. 925--945, 2019.

[74] Šolc T.: Unidecode, lossy ASCII transliterations of Unicode

text, 2022. URL https: //github.com/avian2/unidecode.

ACKNOWLEDGMENT

The authors wish to thank Apple Research and Development
Center, Department of Computer Science, Faculty of Applied
Sciences, University of Sri Jayewardenepura, Nugegoda, Sri
Lanka, for providing the facilities needed to conduct the
research.

AVAILABILITY OF SUPPORTING DATA
Data are available at the public repository
https://github.com/umandaDik/Data.

17

An Approach to Examine and Recognize Anomalies

on Cloud Computing Platforms with Machine

Learning Concepts

MPGK Jayaweera1, WMCJT Kithulwatta2,3#, and RMKT Rathnayaka3,4
1Department of Computing and Information Systems, Faculty of Computing, Sabaragamuwa University of Sri Lanka,
Belihuloya, Sri Lanka
2Department of Information and Communication Technology, Faculty of Technological Studies, Uva Wellassa University of
Sri Lanka, Badulla, Sri Lanka
3Research Center for Grey Systems and Uncertainty Analysis (GSUSL), Department of Physical Sciences & Technology,
Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka.
4Department of Physical Sciences and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka,
Belihuloya, Sri Lanka

Corresponding author: WMCJT Kithulwatta, Email: chirantha@uwu.ac.lk

ABSTRACT Cloud computing is one of the most rapidly growing computing concepts in today's information technology
world. It connects data and applications from various geographical locations. A large number of transactions and the hidden
infrastructure in cloud computing systems have presented the research community with several challenges. Among these,
maintaining cloud network security has emerged as a major challenge. It is critical to address issues in the quickly changing
cloud computing market in order to guarantee that businesses can fully utilize cutting-edge technology, uphold strong
security protocols, and maximize operational effectiveness. Businesses that successfully navigate these obstacles can
maintain their competitiveness in a dynamic digital ecosystem by improving scalability, leveraging the flexibility provided
by the cloud, and adapting to technological changes with ease. Anomaly detection (or outlier detection) is the identification
of unusual or suspicious data that differs significantly from the majority of the data. Research on anomaly detection in
cloud network data is crucial because it enables businesses to more rapidly and efficiently recognize potential security
threats, network performance concerns, and other issues. Recently, machine learning methods have demonstrated their
efficacy in anomaly detection. This research aimed to introduce a novel hybrid model for anomaly detection in cloud
network data and to investigate the performance of this model in comparison to other machine learning algorithms. The
research was conducted with the UNSW-NB15 anomaly dataset and employed various feature selection and pre-processing
techniques to prepare the data for model training. The hybrid model was built using a combination of Random Forest and
SVM algorithms and the process was evaluated using metrics such as F1-Score, Recall, Precision, and Accuracy. The result
showed that the hybrid model has 94.23% accuracy and a total time of 109.92s which is the combination of the train time
of 100.45s and prediction time of 9.47s. The limitations of the study include the class imbalance problem in the dataset and
the lack of real-world applications for testing. The research suggests future work in the application of hybrid models in
anomaly detection and cloud network security and the need for further investigation into the potential benefits of such
models.

KEYWORDS: Anomaly Detection, Cloud Computing, Machine Learning, Monitoring

I. INTRODUCTION

The technology of cloud computing virtualization provides
efficient resources for end users. The characteristics of cloud
computing include manageability, scalability, and availability.
In addition, cloud computing has the advantages of economy,
on-demand service, convenience, universality, multi-tenancy,
flexibility, and stability [27]. Cloud computing mainly provides
three service delivery models and four development patterns:
infrastructure as a service (IaaS), platform as a service (PaaS)
and software as a service (SaaS), public cloud, private cloud,
hybrid cloud, community cloud, and virtual private cloud [29].
Today, cloud computing has integrated with other computing
technologies like fog computing, grid computing, Docker

containers, IoT, etc [28], [30], [31]. Cloud security is one of the
most important aspects of cloud computing because it involves
thousands of user transactions, information, and
communication. The availability, integrity, and confidentiality
of cloud computing platforms or services must be ensured to
provide secure cloud computing platforms/services. Security
vulnerabilities and challenges arise from the usage of cloud
computing services. Currently, cloud computing models are the
primary source of these challenges and vulnerabilities [32]. The
intruders exploit the weakness of cloud models in accessing the
users’ private data, by attacking the processing power of
computer systems [3].

18

An anomaly is an observation that differs so significantly from
previous observations that it raises suspicion that it was caused
by a distinct mechanism. It's frequently a sign of something
unexpected or problematic happening. Anomaly detection is
the identification of rare item events or observations that raise
suspicion by differing significantly from the majority of data.
They are slightly or majorly different from the majority of data
and anomaly detection can help to find outliers and problems
in data. In other words, anomalies are data points or patterns in
a dataset that differ significantly from the expected or usual
behavior. These anomalies can be produced by several things,
including measurement errors, sensor malfunction, data
corruption, or system failure, and they can happen
spontaneously or as a result of mistakes in data collecting or
processing. Finding these odd data points or patterns in a
dataset that are frequently a sign of a deeper issue or problem
is called anomaly detection. A dataset may contain a variety of
anomalies, including point anomalies that only affect a single
instance of data, contextual anomalies that only occur under
certain circumstances, collective anomalies that involve
multiple data points that behave similarly, and collective
contextual anomalies that involve multiple data points that
behave similarly only under certain circumstances. In several
fields, including network intrusion detection, fraud detection,
defect detection, and monitoring of complex systems, anomaly
detection is a critical step [6][7].

Finding strange or unexpected data points or patterns in a
dataset is the process of anomaly detection. Anomalies can be
found using a variety of techniques, such as statistical
techniques, clustering, classification, deep learning, distance-
based techniques, and time-series-based techniques. Quantiles,
standard deviation, and other statistical metrics are used in
statistical procedures to detect data points that significantly
depart from the norm. Anomalies are data points that do not
belong to any cluster and are grouped by clustering algorithms.
To categorize new data points as normal or abnormal,
classification algorithms are trained on labeled data. Deep
learning algorithms discover the underlying structure of the
data and the location of data points that deviate from this
pattern to find anomalies. Measures of the distance between
data points are used by distance-based algorithms to detect data
points that are far away from other ones. To identify anomalies,
time-series-based algorithms employ techniques like moving
average, exponential smoothing, ARIMA, and Prophet. A
combination of several methods is frequently used to boost the
robustness and accuracy of anomaly detection. The choice of
the method relies on the nature of the data and the particular
requirements of the application [2].

The connection between cloud network data and anomaly
detection is it provides an analysis of unusual activities, and
unexpected activities through anomaly detection algorithms.
Effective monitoring and security procedures are becoming
more and more important as more businesses shift their data

and apps to the cloud. Anomaly detection can aid in the
identification of potential security vulnerabilities and
performance problems, enabling businesses to take
preventative action to lessen these risks and their effects on
operations. A wealth of knowledge regarding the functionality,
security, and use of cloud-based systems is contained in cloud
network data. Log files, performance indicators, network
traffic, and other sorts of data are examples of this data. These
data can be examined by anomaly detection algorithms to find
patterns or anomalies that point to issues with the network or
its elements, such as security breaches, performance issues, or
other suspicious activities. Additionally, anomaly detection in
cloud network data aids organizations in conforming to several
legal standards about the security, privacy, and integrity of their
data. Automated anomaly detection is a crucial tool for
preserving the security and dependability of cloud-based
systems since it gets more challenging to manually detect and
react to anomalies as more data is stored and processed in the
cloud [1][6].

II. MOTIVATION

The goal of anomaly detection is to use approaches that can
discover relevant anomalies in data without producing a large
number of false positives.

Cloud security is one of the most important aspects of cloud
computing because it involves thousands of user transactions
and information. The availability, integrity, and confidentiality
of cloud computing platforms or services must be ensured to
provide secure cloud computing platforms/services. Security
vulnerabilities and challenges arise from the usage of cloud
computing services. Currently, cloud computing models are the
primary source of these challenges and vulnerabilities. The
intruders exploit the weakness of cloud models in accessing the
users’ private data, by attacking the processing power of
computer systems [8][10].

The detection of anomalies in data has a long history and a wide
range of applications. An anomaly or outlier is an observation
that differs so significantly from other observations that it
raises the possibility that it was generated by a different
mechanism. It can also be defined as an outlier observation that
shows up to deviate significantly from the rest of the sample
members in which it occurs.

Due to the complexity of modern systems, highly available
cloud service requirements in a cloud environment are difficult
to guarantee and can thus only be ensured with great effort. As
a result of these trends, there is an increasing demand for
intelligent applications that automatically detect anomalies and
provide suggestions for solving or at least mitigating problems
so that a negative impact on service quality does not cascade.
What constitutes an anomaly in each case is determined by the
sample and the methodology. Anomalies are classified into
three types in general: Anomalies can be classified into three

19

types namely point anomalies, collective anomalies, and
contextual anomalies. There are primarily three approaches for
detecting anomalies (machine learning, deep learning, and
statistical approach). After reviewing previous studies, the
study discovered that machine learning outperforms the other
two methods in detecting abnormalities. Although the practice
mentioned above provides ways to detect anomalies in a
dataset. The research community still knows little about which
is the most suitable algorithm for detecting anomalies within a
cloud environment. The author is motivated to close this gap of
knowledge and try to use a specific machine learning algorithm
to detect anomalies using a data set. After analyzing the team
can decide whether this algorithm is suitable or not for
detecting anomalies within a cloud network [4][5][10][24].

A. Significance of the study

It is critical to address anomaly problems in cloud computing
platforms because they have an immediate effect on the
security and dependability of digital infrastructure. Anomalies
can jeopardize data integrity and result in breaches and
unauthorized access, regardless of whether they are caused by
malevolent activity or system malfunctions. It is imperative to
promptly identify and address irregularities in order to
assurance the unceasing procedure of cloud-based services,
protect confidential data, and uphold user confidence. In the
quickly changing world of digital technology, proactive tactics
for anomaly management not only improve the general
resilience of cloud systems but also help to build a strong
cybersecurity foundation.

B. Research objectives

To keep a clear direction within the research study, below
research objectives (RO) were made.

RO1: To introduce a novel hybrid model and compare the

performance of the hybrid model to other machine learning

models, such as single-algorithm models, in detecting

anomalies in cloud network data.

RO2: To look into how different algorithmic combinations

affect, how well the hybrid model performs while looking for

anomalies in data from cloud networks.

RO3: To investigate how well the novel hybrid model handles

various data kinds and investigate how various feature

selection and pre-processing techniques affect the novel hybrid

model's ability to detect anomalies in cloud network data.

C. Contribution of the paper

By presenting a novel hybrid model that combines Random
Forest (RF) and Support Vector Machine (SVM) techniques,
the research significantly advances the subject of anomaly
detection in cloud network data. This hybrid method offers a
unique solution for anomaly detection problems, marking a
significant deviation from the traditional application of single-

algorithm models. In contrast to stand-alone RF models, the
hybrid model aims to improve detection robustness and
accuracy by combining the advantages of both RF and SVM.

One of the primary contributions is the extensive testing of the
proposed hybrid model against multiple machine learning
methods, including multiple RF and SVM configurations and
an MLP model.

III. RESEARCH METHOD

Machine learning models such as Isolation Forests, One-Class
SVM, and Autoencoders are frequently employed in anomaly
identification. These models are significant because, in the
absence of labeled training data, they are highly effective at
identifying patterns and abnormalities in a variety of datasets.
One-Class SVM is skilled at identifying outliers in high-
dimensional spaces, Autoencoders learn intrinsic data
representations, and Isolation Forests effectively isolate
anomalies by building random decision trees. These tools are
useful for detecting deviations from normal patterns in a variety
of applications, including cybersecurity and system
monitoring. This approach involves building up a hybrid model
combining SVM and random forest algorithms. This research
used the UNSW-NB15 dataset for the study. The methodology
is concluded here after identifying and analyzing the
comparisons between different algorithm models.

The combined strengths of Random Forest (RF) and Support
Vector Machine (SVM) in handling different areas of anomaly
detection in cloud network data led to their selection for the
hybrid model. As an ensemble learning technique, RF is well-
known for its stability and resistance to overfitting. It is
particularly good at capturing complicated relationships within
data. However, SVM is good at managing non-linear patterns
by determining optimal decision boundaries, especially when
employing non-linear kernels. The hybrid model combines the
power of SVM's ability to identify distinct decision boundaries
with the versatility of RF's modeling techniques to attempt to
capitalize on the differences between the two approaches.

A. Gather Relevant Data

The UNSW NB15 dataset was used in this research study to
study the usage of cloud network data to detect anomalies. The
loading of the UNSW NB15 dataset was the first stage in the
study procedure. The dataset included network traffic
information that can be used to develop and test anomaly
detection methods.

B. Pre-processing and Feature Selection

Preprocessing the dataset came after the data had been loaded.
Make sure the data is prepared for usage in the feature selection
process, this may involve cleaning and normalizing it. The
process of choosing a subset of the features in a dataset that is
most important for anomaly detection is known as feature

20

selection. Techniques like correlation analysis or mutual
information can be used for this.

C. Train the Model

The process of training models using the chosen features
followed the feature selection phase. The dataset was divided
into training and testing sets, and several anomaly detection
models were trained and evaluated using these sets. In this
study, models like Random Forest (Estimators = 100), Random
Forest (Estimators = 50), Random Forest (Estimators = 150),
SVM (Kernel - rbf, gamma-scale), SVM (Kernel - sigmoid,
gamma-scale), SVM (Kernel - poly, gamma-scale), and a
hybrid model that combined the best features of Random Forest
and SVM models were used.

D. Analyze the Model

A comparison was done once the models had been trained and
assessed to see which model performed the best on the UNSW
NB15 dataset. The evaluation measures used in the comparison
included accuracy, precision, recall, and F1-score. The
comparison's findings were used to evaluate the performance
of various models for finding anomalies in cloud network data.

E. Summary of the Methodology

In conclusion, the study used the UNSW NB15 dataset to
evaluate the hybrid model through preprocessing, feature
selection, model training using random forest models, SVM
models, and a hybrid model, and comparing all the models to
determine which is the best.

This research study recommended the following methodology
step-wise to better understand:

 Data collection: The UNSW-NB15 anomaly dataset
was used.

 Data preprocessing and feature selection: The data
was preprocessed and features were selected for the
training and testing sets.

 Model training: The model was trained using
Random Forest and SVM algorithms [34].

 Hybrid model construction: A novel hybrid model
was built due to their higher accuracy and other
aspects.

 Model evaluation: The performance of the novel
hybrid model was evaluated and compared to that of
other machine learning models, such as single-
algorithm models, Random Forest (Estimators = 100),
Random Forest (Estimators = 50), Random Forest
(Estimators = 150) and SVM (Kernel - rbf, gamma -
scale), SVM (Kernel - sigmoid, gamma - scale), SVM
(Kernel - poly, gamma - scale), and MLP(ANN)
model.

 Data analysis: The results were analyzed and
discussed in terms of the research objectives,
including the impact of various algorithmic

combinations on the performance of the hybrid model,
the performance of the hybrid model compared to that
of single-algorithm models, and the potential future
research pathways for the application of hybrid
models in anomaly detection and cloud network
security.

 Limitations and recommendations: The limitations
of the study were identified as the class imbalance
problem in the dataset and future research
recommendations were made to address the class
imbalance problem in the dataset, further investigate
the potential of hybrid models in anomaly detection
and cloud network security, and investigate the rate of
false positives and false negatives, computational
resources and the ease of understanding of the hybrid
model.

IV. DESIGN, IMPLEMENTATION, AND ANALYSIS

OF THE RESULTS

This section describes the model’s design comprehensively
with the model’s basic architecture and the proposed model's
workflow. Here several diagrams are presented and discussed
to explain model functions. The technologies, algorithms,
special methods, and functions used in implementation were
defined in this section. Further, this section discussed the
findings of the phases of implementation.

A. Gathering the Relevant Data Set

The UNSW-15 dataset was a good option for the study since it
offers a thorough assessment of the proposed approach's
capacity to recognize various sorts of attacks. The dataset
included both known and undiscovered attack types, allowing
for the evaluation of the approach's capacity to identify several
distinct attacks. Additionally, a thorough evaluation of the
performance of the approach is possible due to the dataset's size
and abundance of instances. The dataset also included real-
world network traffic statistics, enhancing the relevance and
applicability of the study's findings to real-world
circumstances. Furthermore, the performance of the proposed
technique in other current ways can be easily compared thanks
to the UNSW-15 dataset, which is a well-known and often-used
dataset in the field of network intrusion detection. A fair
assessment of the performance of the suggested strategy is
possible thanks to the dataset's balance, which includes a
sufficient number of both normal and attack occurrences. The
dataset is additionally current and contains up-to-date network
traffic data, increasing its applicability to current real-world
settings.

Loading Data

First, the author read a CSV file and created a DataFrame object
in Python using the Pandas module. In particular, it loads the
data from the CSV file at the supplied file path using the read

csv() function and stores it in the variable 'df'. The DataFrame
is a strong and adaptable data structure that makes it simple to
manipulate and analyze data presented in tabular form. The

21

Figure 1: Information of the loaded data

author then used to show the data frame's first five rows. This
can be helpful for rapidly verifying that the data has been
loaded properly and previewing the contents of the DataFrame.
Table 1 presents the whole content for the loaded data in the
study.

Table 1: The content of the loaded data

ind

ex

id dur pro

to

ser

vice

stat

e

spk

ts

dpk

ts

sbyte

s

0 1 1.10E-05 udp - INT 2 0 496

1 2 8.00E-06 udp - INT 2 0 1762

2 3 5.00E-06 udp - INT 2 0 1068

3 4 6.00E-06 udp - INT 2 0 900

4 5 1.00E-05 udp - INT 2 0 2126

Further, figure 1 demonstrates the metadata of the loaded data
comprehensively.

Furthermore, table 2 displays a tabular description of the loaded
data.

Table 2: Description of the loaded data

 id dur spkts dpkts sbytes dbytes

cou

nt
82332 82332 82332 82332 82332 82332

mea

n
41166.
5

1.0067
56

18.666
47

17.545
94

7993.9
08

13233.79

std 23767.
35

4.7104
44

133.91
64

115.57
41

171642
.3

151471.5

min 1 0 1 0 24 0

25% 20583.
75

8.00E-
06

2 0 114 0

50% 41166.
5

0.0141
38

6 2 534 178

75% 61749.
25

0.7193
6

12 10 1280 956

max 82332 59.999
99

10646 11018 143557
74

14657531

B. Data Pre-Processing and Feature Selection

Pre-processing the data is a crucial stage in the methodology of
the study since it guarantees that the UNSW-15 dataset is in a

format that the model can use. The UNSW-15 dataset's data
pre-processing may entail several important procedures.

Removal of Irrelevant Columns

To remove particular columns from the DataFrame, the author
used the DataFrame function drop(). It starts by making a list
of the columns that should be deleted, author dropped "id" and
"attack cat." The drop() method was then called with this list as
its first argument. When axis=1 is used as the second
parameter, pandas is instructed to remove the columns. The
third parameter, inplace=True, is set to mean that the original
DataFrame should be used for the operation. As a result, this
will delete the columns "id" and "attack cat" from the
DataFrame "df," update the original DataFrame to reflect the
deletion of those columns, and return no new DataFrame.

Clamping

Clamping is a preprocessing method for reducing the range of
values in a dataset. It is usually applied to stop outliers from
skewing the results of subsequent processes, including
statistical analysis or machine learning. Putting a maximum
and minimum threshold for the values in a dataset entails
"clamping," or setting any values outside of this range to the
threshold value closest to them. This can help prepare data for
analysis and clean it, which can also help to increase the
precision and stability of machine learning models. In this
research, the author prunes extreme values to make
distributions less skewed. Features are reduced to the 95th
percentile when their maximum values exceed 10 times the
median value.

In summary, the author produces descriptive statistics for the
numeric columns after first filtering the original DataFrame to
only include those columns. The outcome is a new DataFrame
that gives an overview of the distribution of data in the original
DataFrame's numerical columns. Then, the author determines
whether the maximum value of any column is bigger than 10
times the median value and greater than 10, and if it is, it
replaces the values in that column with the 95th percentile's
value if they are higher, else the value is left alone. If the
DEBUG setting is set to 1, each column will print some
information; otherwise, nothing will be printed.

Apply the log function on skewed-right numerical numbers

The author added one to each value before applying the natural
logarithm to the values of each column in the numeric
DataFrame df numeric if that column's minimum value is zero
and there are more than 50 unique values in that column. This
avoids using the undefined log(0). If the DEBUG setting is set
to 1, each column will print some information; otherwise,
nothing will be printed.

Reduce labels in categorical features

Reducing the cardinality of features to 5 or 6. Take the top 5
occurring labels in the feature as labels and set the remainder

22

to '-' as seldom used labels. In this, the author determines
whether each given column has more than six distinct values.
If this is true for any given column, the value in that column is
replaced with a '-' if it is not one of the most frequent values
there; otherwise, it is left alone. If the DEBUG setting is set to
1, each column will print some information; otherwise, nothing
will be printed. The scenario for reducing the labels in
categorical features is presented in Table 3 below.

Table 3: Reduce labels in categorical features

index proto service state

count 82332 82332 82332

unique 131 13 7

top tcp - FIN

freq 43095 47153 39339

Best Features
Univariate statistical tests to determine which features best
predict the target feature. Utilizing Python's scikit-learn
module, choose the best features from a DataFrame, and
display the outcomes. For feature selection, it first imports the
required modules SelectKBest and chi2. The SelectKBest class
is then created with the chi2 scoring function and the input
k='all', instructing it to select all characteristics. The best
features object is fitted to the input data by taking into account
the goal variable y and the input data X. The scores and feature
names are concatenated to produce a new DataFrame. The new
DataFrame's columns now go by the names "feature" and
"score." The DataFrame is then sorted based on the feature
scores, and a bar chart is generated to show the top 21 features.

Figure 2 presents a bar chart for the top features.

Figure 2: A bar chart for the top features

Encoding Categorical Features

One-hot encoding is used. None of the categorical features are
ordinal. In this study, the author tried picking particular rows
and columns from the original DataFrame "df" to create two
new variables, "X" and "y," and it is displaying the first five

rows of the DataFrame "X". The particular encoding
categorical features are presented in table 4.

Table 4: Encoding Categorical Features

inde

x

dur prot

o

serv

ice

state spkts dpkt

s

sbytes

0 1.10E-

05

udp - INT 0.6931

47

0 6.2065759

27

1 8.00E-

06

udp - INT 0.6931

47

0 7.4742048

06

2 5.00E-

06

udp - INT 0.6931

47

0 6.9735430

2

3 6.00E-

06

udp - INT 0.6931

47

0 6.8023947

63

4 1.00E-

05

udp - INT 0.6931

47

0 7.6619975

59

After that, the author used the "OneHotEncoder" class to apply
the One-Hot-Encoding approach to columns 1, 2, and 3 of the
DataFrame X while leaving the other columns alone to be
handled by the "ColumnTransformer" class. Additionally, a
numpy array was being created from the encoded DataFrame.

After that, unique values of a few columns in a DataFrame are
extracted using Python's Pandas package, and they are then
inserted into a list of feature names in a certain order. These
three for loops iterate over the distinct values of the 'state',
'service', and 'proto' columns of the DataFrame 'df' and add
them to the list of feature names in reverse order while
excluding the first element. To facilitate additional analysis or
model training, the author has included the distinctive values
from these columns in the list of feature names.

C. Modeling and Evaluation

This entails training the SVM and random forest parts of the
hybrid algorithm, training and test split, standardizing
continuous features, training with random forest and SVM
separately, and implementing a hybrid model and comparison.

Train Set Split

Using stratified sampling, the data in this part are divided into
training and test sets. The input data "X" and the target variable
"y" are divided into two datasets: the training set and the testing
set, using the scikit-learn library. The dataset, the percentage of
the dataset that should be given to the testing set, a random seed
to assure repeatability, and the stratification of the data are all
inputs to the "train test split" function, which was employed by
the author in this study. The 'X train', 'X test', 'Y train', and 'Y
test' datasets will be utilized for the models' training and testing,
respectively. This split is an essential stage in the machine
learning process because it enables the author to predict how
well the model will perform on new data and avoid overfitting.

23

Figure 3: Prediction (Random Forest 100)

Figure 4: Model Performance (Random forest
100)

Figure 5: Confusion Matrix (Random Forest 100)

Standardize continuous features

The continuous features are scaled using a standard scaler to
ensure that they are all in the same size order. To normalize the
numerical features of the training and test datasets, use the
scikit-learn library. It makes use of the "StandardScaler" class
from the library's "preprocessing" module to scale the
numerical features to unit variance and standardize them by
removing the mean. By utilizing the 'fit transform()' method,
which first fits the scaler to the data before transforming it, it
generates an instance of the 'StandardScaler' class and applies
it to the numerical characteristics of the training dataset. The
test dataset's numerical features are then normalized using the
transform() method using the same instance of the scaler. The
efficiency and stability of the models can be enhanced by
normalizing the numerical features, which is a crucial step
because many Machine Learning methods are sensitive to the
scale of the data.

Following that, the author constructs an empty dataframe called
"model performance" and imports much time-related,
performance-related metrics from the scikit-learn library. The
dataframe comprises seven columns, including "Accuracy,"
"Recall," "Precision," "F1-Score," "train time," "pred time,"
and "total time." The time-related functions from the Python
library were used to assess the time spent on training and
prediction of the model, and the imported performance metrics
from the scikit-learn library were used later to evaluate the
performance of a machine learning model. This dataframe was
used to store these measurements for later examination.

Random Forest

The author is making predictions on the test dataset while
training a Random Forest classifier in Python using the scikit-
learn library. It generates an instance of the class, imports the
RandomForestClassifier class from the library's ensemble
module, and then trains the model using the training dataset.
Using a time module also keeps track of the length of time spent
on training and prediction. After making the predictions, the
author made predictions on the test dataset using the trained
model's prediction approach. The Random Forest Classifier is
an ensemble method that uses averaging to increase predicted
accuracy and reduce over-fitting. It trains numerous decision
trees on different subsamples of the dataset. The summary data
for the Random Forest 100 prediction is presented in Figure 3.

On a test dataset, this algorithm assessed how well a Random
Forest classifier model performs. It computes several
performance metrics, including accuracy, recall, precision, and
f1-score, using the scikit-learn module. It also determines how
long training and prediction will take. Additionally, it prints the
times and performance indicators in a more readable manner.

The results are then saved in a dataframe for future study.
Figure 4 presents the model performance data (Random Forest
100).

On a test dataset, the author plotted a confusion matrix for a
Random Forest classifier model. A table called the confusion
matrix is used to describe how well a classification algorithm
performs. The matrix is generated using the scikit-learn
library's plot confusion matrix function, which takes the model,
test data, and true labels as inputs. The plot is displayed with a
white background and a chosen size of 5 x 5. Figure 5 presents
the Random Forest 100 Confusion Matrix.

The top 20 features of the Random Forest classifier model are
then plotted according to their importance using the scikit-learn
package, and the plot was displayed in a 10 x 10-inch format
with a white background. Additionally, it removed the top and
right spines from the plot and flipped the y-axis such that the
most significant feature was at the top.

24

Figure 7: Predictions (Random Forest 50)

Figure 8: Model Perfromance (Random Forest 50)

Figure 9: Confusion Matrix(Random Forest 50)

Figure 10: Predictions (Random Forest 150)

Figure 11: Model Performance (Random Forest 150)

Figure 12: Confusion Matrix (Random Forest 150)

Figure 13: SVM (Kernel - rbf, gamma - scale) Predictions

Figure 14: SVM (Kernel - rbf, gamma - scale) Model Performance

Figure 6 presents the top 20 features of Random Forest for 100
estimators.

The author used the above concepts for Random Forest
(Estimators = 50) and Random Forest (Estimators = 150) and
got the following results. Figure 7 presents the prediction for
Random Forest 50.

Further, figure 8 presents the performance of the model for
Random Forest 50.

Figure 9 presents the Confusion Matrix for the Random Forest
50.

As presented in Figure 10, the Model Prediction for Radom
Forest 150 is available.

Further, figure 11 presents the model performance for Random
Forest 150.

According to Figure 12, the Confusion Matrix for Random
Forest 150 was presented.
SVM

After calculating results using the Random Forest algorithm,
the author tried to apply these logics to the SVM algorithm.

The scikit-learn library was used by the author to train and test
a Support Vector Machine (SVM) classification model. The
kernel = 'rbf' and gamma ='scale', which were parameters of the
RBF kernel, were used to fit the model to the training data. This
generated an instance of the SVM class. On the test dataset, it
used the trained model to generate predictions. It also kept track
of how long training and prediction take. The cell's execution
time was also gauged. The gamma parameter was
automatically scaled by 1 / (n_features * X.var()), where n
_features were the total number of features and X.var() was the
variance of the training dataset, using the 'rbf' kernel and
gamma ='scale' in the code. Figure 13 presents the SVM
predictions for (Kernal – rbf, gamma – scale).

Then, using accuracy, recall, precision, F1-score, time for
training, time for prediction, and total time, the author assessed
the SVM model's performance on the test dataset and recorded
the findings in a dataframe for later use. The model's
performance is then recorded in a dataframe for future use, and
the assessment metrics and time measurements are written out
in a human-readable format. The SVM model performance for
(Kernal – rbf, gamma – scale) was presented in Figure 14.

25

Figure 15: Confusion Matrix for SVM (Kernel - rbf, gamma -
scale)

Figure 16: SVM (Kernel - sigmoid, gamma - scale) Predictions

Figure 18: Confusion Matrix for SVM (Kernel - sigmoid,
gamma - scale)

Figure 17: SVM method performance for
(Kernel - sigmoid, gamma - scale)

Figure 19: SVM (Kernel - poly, gamma - scale) Predictions

Figure 20: SVM method performance for
(Kernel - poly, gamma - scale)

Figure 21: Confusion Matrix for SVM (Kernel - poly, gamma
- scale)

The predictions provided by the SVM model on the test dataset
are then plotted as a confusion matrix by the author. The model,
"X test," and "y test" were used as input arguments for the "plot
confusion matrix" function, which creates the confusion
matrix. The figurine has a 5.5-inch height and a blue color
scheme. The 'plt.show()' function was used to show the plot. It
was used to visually assess the model's performance and
determine which class the model successfully predicted and
which class it incorrectly forecasted. Figure 15 presents the
Confusion Matrix for SVM (Kernel - rbf, gamma - scale).

After that, the author used the above concepts to SVM (Kernel
- sigmoid, gamma – scale) and SVM (Kernel - poly, gamma -
scale). The following results were obtained from the study.

The SVM prediction for (Kernel - sigmoid, gamma - -scale)
was presented in Figure 16.

The SVM method performance for (Kernel - sigmoid, gamma
- -scale) was presented in Figure 17.

Further, the Confusion Matrix for SVM (Kernel- - sigmoid,
gamma - scale) was presented in Figure 18.

The SVM prediction for (Kernel - poly, gamma - -scale) was
presented in Figure 19.

The SVM method performance for (Kernel - poly, gamma - -
scale) was presented in Figure 20.

Further, the Confusion Matrix for SVM (Kernel - poly, gamma
- -scale) was presented in Figure 21.

ANN - MLP
The Multilayer Perceptron (MLP) is a Feedforward Neural
Network (FNN). The MLP is trained using scikit-

26

Figure 22: ANN - MLP Predictions

Figure 23: ANN - MLP Method Performance

Figure 24: ANN - MLP Confusion Matrix

Figure 25: Predictions for Hybrid Model

Figure 26: Method Performance - Hybrid
Model

MLPClassifier learn on a dataset ('X train', 'y train') with certain
hyperparameters defined, and the learned model is then used to
make predictions on another dataset ('X test'). Additionally, it
measured how long it takes to train the model and generate
predictions using Python's time library. In conclusion, the
author tested and trained an MLP classifier. As in Figure 22,
the ANN – MLP prediction was captured.

The performance of a trained MLP model was assessed by the
following. In this research study, the author used a variety of
evaluation metrics, including accuracy, recall, precision, and
F1-score. These evaluation metrics were then printed along
with the time that it took to train the model, make predictions,
and evaluate the performance overall. All evaluation metrics
and time were then saved in a dataframe for comparison at a
later time. It is a summary of the model's performance. The
ANN – MLP method performance is presented in Figure 23.

Next, the author used the scikit-learn library's 'plot confusion
matrix' function to create and present a confusion matrix for the
trained MLP model on the test dataset. Figure 24 presents the
Confusion Matrix for ANN – MLP.

**Although this study used the ANN – MLP model for

analyzing purposes. To build the hybrid model, the research

team did not use the ANN-MLP model.

Hybrid Model

The hybrid model was created by combining the Random
Forest Model and the SVM model. The Random Forest was

used to pre-process the data and to select the most relevant
features, followed by the SVM model to classify the data based
on the selected features.

 Random Forest Classifier with 150 estimators was
used as it yielded the best results in all Random Forest
models.

 SVM with poly kernel was used as it yielded the best
result among SVM models.

In this research study, a new model that combined the Random
Forest Classifier and SVM Classifier was trained. It began by
training a Random Forest Classifier with 150 estimators, then
used the trained Random Forest model to select the most crucial
features from the training data. It set a threshold of "median,"
which meant that features that were not crucial enough were
eliminated from the dataset. The 'X train important' variable
was used to keep the training data after it had been modified to
include only the most crucial attributes. The test data, which
was kept in the 'X test important' variable, went through the
same procedure. The important features from the
X_train_important data were then used to train an SVM model
with a polynomial kernel. Then, using the X_test_important
data and the trained SVM model, it made predictions. It also
computed the accuracy, recall, precision, and F1-score of the
predictions using the y_test data and measured the time
required to train the model and make predictions. Figure 25
presents the predictions for the hybrid model.

The author evaluated the performance of a hybrid model that
combined the Random Forest model's feature selection method
with the Support Vector Machine's classification algorithm
(SVM). The most crucial characteristics were chosen from the
training set by the Random Forest model, and the SVM was
subsequently trained using this smaller feature set. The
accuracy, recall, precision, and F1-Score are then used to assess
the hybrid model's performance, and the time it took to train
and the forecast was also noted. For later comparison with
different models, the outcomes were then saved in the
"model_performance" dataframe with the label "Hybrid
(Estimators - 150, Kernel - poly, gamma - scale)". Figure 26
presents the method performance for the hybrid method.

27

Figure 27: Confusion Matrix for Hybrid Method

Then, using the 'SelectFromModel' feature selection technique,
the author generated a confusion matrix for the SVM model
that was fitted to the converted training data (X train important)
and the transformed test data (X test important). The "Seaborn
library's" "plot confusion matrix" method is used to display the
confusion matrix as a 5x5-inch figure with a white background
and a blue color map to represent it. By comparing the
predicted values to the actual values in the test set, this matrix
was used to assess the model's performance. Knowing how
many false positives, false negatives, true positives, and true
negatives the model produced is helpful. Figure 27 presents the
Confusion Matrix for the Hybrid Model.

Model Comparison

The author can anticipate seeing the performance measures
(such as accuracy, recall, precision, and F1-score) of each
model as well as their training and prediction timeframes from
the model comparison. With the aid of this data, the author can
compare the models and choose the one that offers the best
overall performance or the best performance/computational
efficiency trade-off. The confusion matrix for each model can
also be used by the author to gauge how well it predicts the
various classes. The overall model comparison is presented in
Table 5.

Table 5: Overall model comparison

index Accu

racy

Recal

l

Preci

sion

F1-

Score

train

_time

pred

_time

total

_time

Rando

m

Forest

(Estim

ators -

100)

0.977

59

0.977

59

0.977

67

0.977

60

7.744

32

0.191

59

7.935

9185

Rando

m

Forest

(Estim

0.976

68

0.976

68

0.976

78

0.976

69

4.004

90

0.096

96

4.101

8745

ators -

50)

Rando

m

Forest

(Estim

ators

= 150)

0.977

65

0.977

65

0.977

76

0.977

66

11.54

36

0.276

33

11.81

9950

SVM

(Kern

el -

rbf,

gamm

a -

scale)

0.950

20

0.950

20

0.951

27

0.950

29

94.21

05

17.34

44

111.5

5504

SVM

(Kern

el -

sigmoi

d,

gamm

a -

scale)

0.680

69

0.680

69

0.680

98

0.680

82

357.3

23

29.79

81

387.1

2117

SVM

(Kern

el -

poly,

gamm

a -

scale)

0.950

32

0.950

32

0.951

18

0.950

40

101.9

39

10.00

80

111.9

4741

MLP 0.967

99

0.967

99

0.968

04

0.968

00

112.1

30

0.047

86

112.1

7792

Hybri

d

(Estim

ators -

150,

Kernel

- poly,

gamm

a -

scale)

0.942

309

0.942

309

0.942

45

0.942

34

100.4

496

9.477

212

109.9

267

Performance Measures:

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has an accuracy of
94.2309%. This accuracy is lower than that of the Random
Forest algorithm with 100 estimators (97.7592%) and the
Random Forest algorithm with 50 and 150 estimators
(97.6681% and 97.7652%, respectively), but higher than that

28

Figure 28: Model Performance - Accuracy

Figure 29: Model Performance - Recall

Figure 30: Model Performance - Precision

of the SVM algorithm with sigmoid kernel and scale gamma
(68.0695%).

It could be argued that the specific combination of estimators
and kernel used in the hybrid model may not be optimal and
that a different combination may yield better performance.
Figure 28 presents a comparative bar chart for the Model
Performance under the accuracy.

Figure 29 presents the model performance comparison
according to the recall.

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has a recall value of
94.2309%. This recall is lower than that of the Random Forest
algorithm with 100 estimators (97.7592%) and the Random
Forest algorithm with 50 and 150 estimators (97.6681% and
97.7652%, respectively). This suggests that the hybrid model
is not as good at detecting positive instances (i.e., it has a higher
number of false negatives) compared to the Random Forest
algorithm with 100 estimators and the Random Forest
algorithm with 50 and 150 estimators.

Figure 30 presents the model performance comparison
according to the precision.

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, had a precision value of
94.2459%. This precision was lower than that of the Random
Forest algorithm with 100 estimators (97.7678%) and the
Random Forest algorithm with 50 and 150 estimators
(97.6780% and 97.7765%, respectively). This suggested that
the hybrid model was not as good at detecting correct positive

29

Figure 31: Model Performance - F1 Score

Figure 32: Model Comparison - train_time

instances (i.e., it has a higher number of false positives)
compared to the Random Forest algorithm with 100 estimators
and the Random Forest algorithm with 50 and 150 estimators.

Figure 31 presents the model performance comparison
according to the F1 Score.

The hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has an F1-score of
94.2344%. This is slightly lower than the Random Forest
algorithm with 100 estimators, but higher than the SVM
algorithm with sigmoid kernel and scale gamma. This
suggested that the hybrid model had a good balance of
precision and recall, but not as good as the Random Forest
algorithm with 100 estimators. It's also important to note that
the F1-score was a measure that seeks a balance between
precision and recall, so a higher F1-score means a better
balance of precision and recall. In this case, it can be observed
that the Hybrid model is not the best in terms of F1-score but
it's still quite good.

Time Frames:

The Hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, has a train time of 65.38
seconds. This train time was slower than the Random Forest
algorithm with 100 estimators, but faster than the SVM
algorithm with sigmoid kernel and scale gamma. This
suggested that the Hybrid model had a relatively moderate train
time compared to other models. However, it's important to
consider the trade-off between train time and model
performance. As we can see the Hybrid model had a good
performance in terms of F1-score, the additional train time may
be worth it if the performance gain was deemed significant for
the specific application or domain.

Figure 32 presents the model comparison according to the
train_time.

Figure 33 presents the model performance comparison
according to the pred_time.

30

Figure 33: Model Comparison -pred_time
Figure 34: Model Performance - Total Time

The Hybrid model, which used a combination of 150 estimators
and a poly kernel with scale gamma, had a prediction time of
6.31 seconds. This prediction time was slower than the Random
Forest algorithm with 100 estimators and 50 estimators, but
faster than the SVM algorithm with rbf kernel and sigmoid
kernel with scale gamma. This suggests that the Hybrid model
has a relatively moderate prediction time compared to other
models. However, it's important to consider the trade-off
between prediction time and model performance. As we can see
the Hybrid model had a good performance in terms of F1-score,
the additional prediction time may be worth it if the
performance gain was deemed significant for the specific
application or domain.

Figure 34 presents the model comparison according to the total
time.

From the given output, it can be seen that the 'Hybrid
(Estimators - 150, Kernel - poly, gamma - scale)' model has a
total time of 71.691509 seconds, which was slower than most
of the other models, particularly when compared to the Random
Forest models and the MLP model. This suggested that the
hybrid model may not be as computationally efficient as some
of the other models in terms of the total time taken.

Class imbalance problem

The dataset's class imbalance problem poses a serious problem
that affects the accuracy of the findings when it comes to
anomaly detection in cloud network data. When the proportion
of normal behavior to anomalous behavior is noticeably
greater, an imbalance arises. This imbalance might, in practice,
result in a model that performs well in predicting instances of
the majority class (normal examples) but poorly in detecting
cases of the minority class (anomalies). A model with great
precision but low recall is one of the possible outcomes, which

31

could lead to a system that fails to recognize real security
threats and ignores vulnerabilities.

Looking ahead, resolving the issue of class imbalance becomes
essential for subsequent studies. Investigating other balancing
strategies, including oversampling, undersampling, or
sophisticated approaches like the Synthetic Minority Over-
sampling Technique (SMOTE), is one possible direction. The
purpose of these methods is to lessen the effect of class
imbalance on model performance. A more resilient anomaly
detection system may also benefit from the application of
ensemble methods and the creation of more sophisticated
hybrid models, particularly when those models are specifically
made to manage unbalanced datasets. To gain a deeper
comprehension of hybrid model performance in real-world
scenarios, future research should expand evaluations to a wider
range of real-world datasets.

V. CONCLUSION & RECOMMENDATIONS

A. Discussion

The main objective of this research was to introduce a novel
hybrid model for detecting anomalies in cloud network data
and to compare its performance to other machine learning
models. The study used the UNSW-NB15 anomaly dataset for
the experiments and preprocessed and selected features for the
training and testing sets. The model training was done using
Random Forest and SVM algorithms, and a novel hybrid model
was built with Hybrid RF(Estimators - 150) and SVM(Kernel -
poly, gamma - scale) due to their higher accuracy and other
aspects.

The results showed that the novel hybrid model performed
somewhat poorly compared to the Random Forest models that
were used alone, but the total time for the hybrid model was
deemed acceptable. This was the first time that a hybrid model
was used for the UNSW_NB15 dataset. The limitation of the
study was the class imbalance problem in the dataset.

The results of this study contributed to the understanding of
how different algorithmic combinations affect the performance
of a hybrid model in detecting anomalies in cloud network data.
The study also highlights the importance of feature selection
and pre-processing techniques in improving the performance of
a model. However, the study also highlighted the need for
further research to address the class imbalance problem in the
dataset.

One possible explanation for the poor performance of the
hybrid model could be the combination of the two models.
SVM and Random Forest used different approaches to solve
classification problems, and combining them may not have
resulted in an optimal solution. Another possible explanation
could be the choice of parameters for the SVM, such as the
kernel and gamma, which may not have been the best suited for
the specific dataset used in this research.

Based on the information provided, the contribution of the
study can be summarized as follows:

 Novel Hybrid Model: The study proposed a new
hybrid model to detect anomalies in cloud network
data. The model was built using two selected
algorithms, SVM and Random Forest, and is
compared to single-algorithm models to evaluate its
performance.

 Algorithmic Combinations: The study investigated

the impact of different algorithmic combinations on
the performance of the hybrid model. This analysis
provides insights into the effectiveness of various
machine learning algorithms in detecting anomalies in
cloud network data.

 Data Handling: The study also explored how well the

hybrid model handles various types of data and how
various feature selection and pre-processing
techniques can affect its performance.

 Research Pathways: The study discusses potential

future research pathways for the application of hybrid
models in anomaly detection and cloud network
security. It also highlights the importance of
understanding the hybrid model and its security
implications.

 Performance Evaluation: The study evaluates the

hybrid model in terms of its computational resources,
false positives, and false negatives, which can provide
practical insights into its usefulness in real-world
applications.

Overall, the study contributed to the field of anomaly detection
and cloud network security by proposing a new hybrid model
and evaluating its performance against other machine learning
algorithms. It also provided insights into the impact of different
algorithmic combinations, data handling techniques, and
potential research pathways.

B. Practical implication of the hybrid model

Particularly in the area of anomaly detection in cloud network
data, the hybrid model in this study has important real-world
applications. The model provides a sophisticated approach to
addressing the intricacies and nuances inherent in cloud
network security by combining the benefits of Random Forest
(RF) and Support Vector Machine (SVM). The robustness of
the system is improved when managing cloud network
anomalies because of its capacity to create precise decision
limits with the help of SVM and to capture complex
relationships within data, which is made possible by RF's
ensemble learning. Put practically, this means that cloud

32

settings will be able to recognize odd patterns or possible
security concerns with greater precision.

C. Conclusion and Recommendations

This research aimed to introduce a novel hybrid model for
detecting anomalies in cloud network data and to compare its
performance to other machine learning models. The study used
the UNSW-NB15 anomaly dataset and preprocessed and
selected features for the training and testing sets. The results
showed that the novel hybrid model performed somewhat
poorly compared to the Random Forest models that were used
alone, but the total time for the hybrid model was deemed
acceptable. The study also highlighted the need for further
research to address the class imbalance problem in the dataset.
Overall, the study contributed to the understanding of how
different algorithmic combinations affect the performance of a
hybrid model in detecting anomalies in cloud network data and
the importance of feature selection and pre-processing
techniques in improving the performance of a model.

The practical implications of the findings suggest that hybrid
models can be used for anomaly detection in cloud network
data, but the performance may be impacted by the selection of
algorithms and the dataset used. The study also recommends
future research to address the class imbalance problem in the
dataset and to further investigate the potential of hybrid models
in anomaly detection and cloud network security. Additionally,
the study recommends future research to investigate the rate of
false positives and false negatives, computational resources,
and the ease of understanding of the hybrid model.

In conclusion, this research has shown that a hybrid model of
SVM and Random Forest can be used for anomaly
identification in cloud network data using the UNSW-NB15
dataset. However, the results suggested that the performance of
the hybrid model was not as good as the Random Forest models
alone. Further research is needed to optimize the parameters of
the SVM and Random Forest models to improve the
performance of the hybrid model. Despite the limitations, this
research provides valuable insights for future research in this
area.

ACKNOWLEDGMENT

The first author is thanking the supervisors of this research
study for their support.

FUNDING

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] A. Vervaet, “MONILOG: An Automated Log-based
ANOMALY DETECTION SYSTEM FOR CLOUD computing

infrastructures,” 2021 IEEE 37th International Conference on Data
Engineering (ICDE), 2021.

[2] Dingde Jiang, Yang Han, Xingwei Wang, Zhengzheng Xu,
Hongwei Xu, and Zhenhua Chen, "A time-frequency detecting method
for network traffic anomalies," International Conference on
Computational Problem-Solving, Li Jiang, China, 2010, pp. 94-97.

[3] B. Wang, Q. Hua, H. Zhang, X. Tan, Y. Nan, R. Chen, and X.
Shu, “Research on ANOMALY DETECTION and real-time
reliability evaluation with the log of cloud platform,” Alexandria
Engineering Journal, vol. 61, no. 9, pp. 7183–7193, 2022.

[4] S. H. Haji and S. Y. Ameen, “Attack and anomaly detection in
IOT networks using Machine Learning Techniques: A Review,” Asian
Journal of Research in Computer Science, pp. 30–46, 2021.

[5] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, "Machine
Learning for Anomaly Detection: A Systematic Review," in IEEE
Access, vol. 9, pp. 78658-78700, 2021, doi:
10.1109/ACCESS.2021.3083060.

[6] T. Sureda Riera, J.-R. Bermejo Higuera, J. Bermejo Higuera, J.-J.
Martínez Herraiz, and J.-A. Sicilia Montalvo, “Prevention and fighting
against web attacks through anomaly detection technology. A
systematic review,” Sustainability, vol. 12, no. 12, p. 4945, 2020.

[7] M. Ozkan-Okay, R. Samet, Ö. Aslan and D. Gupta, "A
Comprehensive Systematic Literature Review on Intrusion Detection
Systems," in IEEE Access, vol. 9, pp. 157727-157760, 2021, doi:
10.1109/ACCESS.2021.3129336.

[8] J. Svacina, J. Raffety, C. Woodahl, B. Stone, T. Cerny, M. Bures,
D. Shin, K. Frajtak, and P. Tisnovsky, “On vulnerability and Security
Log Analysis,” Proceedings of the International Conference on
Research in Adaptive and Convergent Systems, 2020.

[9] T. L. Yasarathna and L. Munasinghe, "Anomaly detection in cloud
network data," 2020 International Research Conference on Smart
Computing and Systems Engineering (SCSE), Colombo, Sri Lanka,
2020, pp. 62-67, doi: 10.1109/SCSE49731.2020.9313014.

[10] T. Hagemann and K. Katsarou, “A systematic review on
anomaly detection for cloud computing environments,” 2020 3rd
Artificial Intelligence and Cloud Computing Conference, 2020.

[11] A. Alshammari and A. Aldribi, “Apply machine learning
techniques to detect malicious network traffic in cloud computing,”
Journal of Big Data, vol. 8, no. 1, 2021.

[12] S. Nedelkoski, J. Cardoso and O. Kao, "Anomaly Detection from
System Tracing Data Using Multimodal Deep Learning," 2019 IEEE
12th International Conference on Cloud Computing (CLOUD), Milan,
Italy, 2019, pp. 179-186, doi: 10.1109/CLOUD.2019.00038.

[13] M. S. Islam, W. Pourmajidi, L. Zhang, J. Steinbacher, T. Erwin
and A. Miranskyy, "Anomaly Detection in a Large-Scale Cloud
Platform," 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-
SEIP), Madrid, ES, 2021, pp. 150-159, doi: 10.1109/ICSE-
SEIP52600.2021.00024.

[14] F. J. Schmidt, “Anomaly detection in cloud computing
environments,” thesis.

[15] T. Salman, D. Bhamare, A. Erbad, R. Jain and M. Samaka,
"Machine Learning for Anomaly Detection and Categorization in

33

Multi-Cloud Environments," 2017 IEEE 4th International Conference
on Cyber Security and Cloud Computing (CSCloud), New York, NY,
USA, 2017, pp. 97-103, doi: 10.1109/CSCloud.2017.15.

[16] S. E. Hajjami, J. Malki, M. Berrada and B. Fourka, "Machine
Learning for anomaly detection. Performance study considering
anomaly distribution in an imbalanced dataset," 2020 5th International
Conference on Cloud Computing and Artificial Intelligence:
Technologies and Applications (CloudTech), Marrakesh, Morocco,
2020, pp. 1-8, doi: 10.1109/CloudTech49835.2020.9365887.

[17] X. Qiu, Y. Dai, P. Sun and X. Jin, "PHM Technology for
Memory Anomalies in Cloud Computing for IaaS," 2020 IEEE 20th
International Conference on Software Quality, Reliability and
Security (QRS), Macau, China, 2020, pp. 41-51, doi:
10.1109/QRS51102.2020.00018.

[18] A. Gerard, R. Latif, S. Latif, W. Iqbal, T. Saba and N. Gerard,
"MAD-Malicious Activity Detection Framework in Federated Cloud
Computing," 2020 13th International Conference on Developments in
eSystems Engineering (DeSE), Liverpool, United Kingdom, 2020, pp.
273-278, doi: 10.1109/DeSE51703.2020.9450728.

[19] J. Bogatinovski, S. Nedelkoski, J. Cardoso and O. Kao, "Self-
Supervised Anomaly Detection from Distributed Traces," 2020
IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), Leicester, UK, 2020, pp. 342-347, doi:
10.1109/UCC48980.2020.00054.

[20] W. Wang, X. Du, D. Shan, R. Qin and N. Wang, "Cloud
Intrusion Detection Method Based on Stacked Contractive Auto-
Encoder and Support Vector Machine," in IEEE Transactions on
Cloud Computing, vol. 10, no. 3, pp. 1634-1646, 1 July-Sept. 2022,
doi: 10.1109/TCC.2020.3001017.

[21] C. Raj, L. Khular and G. Raj, "Clustering Based Incident
Handling For Anomaly Detection in Cloud Infrastructures," 2020 10th
International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 2020, pp. 611-616, doi:
10.1109/Confluence47617.2020.9058314.

[22] Y. Yuan, H. Anu, W. Shi, B. Liang and B. Qin, "Learning-Based
Anomaly Cause Tracing with Synthetic Analysis of Logs from
Multiple Cloud Service Components," 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC),
Milwaukee, WI, USA, 2019, pp. 66-71, doi:
10.1109/COMPSAC.2019.00019.

[23] M. Thill, W. Konen and T. Bäck, "Online anomaly detection on
the webscope S5 dataset: A comparative study," 2017 Evolving and
Adaptive Intelligent Systems (EAIS), Ljubljana, Slovenia, 2017, pp.
1-8, doi: 10.1109/EAIS.2017.7954844.

[24] M. S. Islam and A. Miranskyy, "Anomaly Detection in Cloud
Components," 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), Beijing, China, 2020, pp. 1-3, doi:
10.1109/CLOUD49709.2020.00008.

[25] S. Eltanbouly, M. Bashendy, N. AlNaimi, Z. Chkirbene and A.
Erbad, "Machine Learning Techniques for Network Anomaly
Detection: A Survey," 2020 IEEE International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar,
2020, pp. 156-162, doi: 10.1109/ICIoT48696.2020.9089465.

[26] I. Aljamal, A. Tekeoğlu, K. Bekiroglu and S. Sengupta, "Hybrid
Intrusion Detection System Using Machine Learning Techniques in
Cloud Computing Environments," 2019 IEEE 17th International

Conference on Software Engineering Research, Management and
Applications (SERA), Honolulu, HI, USA, 2019, pp. 84-89, doi:
10.1109/SERA.2019.8886794.

[27] Kithulwatta, W.M.C.J.T., Wickramaarachchi, W.U., Jayasena,
K.P.N., Kumara, B.T.G.S., Rathnayaka, R.M.K.T. (2022). Adoption
of Docker Containers as an Infrastructure for Deploying Software
Applications: A Review. In: Saeed, F., Al-Hadhrami, T., Mohammed,
E., Al-Sarem, M. (eds) Advances on Smart and Soft Computing.
Advances in Intelligent Systems and Computing, vol 1399. Springer,
Singapore. https://doi.org/10.1007/978-981-16-5559-3_21

[28] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara
and R. M. K. T. Rathnayaka, "Docker incorporation is different from
other computer system infrastructures: A review," 2021 International
Research Conference on Smart Computing and Systems Engineering
(SCSE), Colombo, Sri Lanka, 2021, pp. 230-236, doi:
10.1109/SCSE53661.2021.9568323.

[29] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara
and R. M. K. T. Rathnayaka, "Docker Containerized Infrastructure
Orchestration with Portainer Container-native Approach," 2022 3rd
International Conference for Emerging Technology (INCET),
Belgaum, India, 2022, pp. 1-6, doi:
10.1109/INCET54531.2022.9825257.

[30] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara
and R. M. K. T. Rathnayaka, "Performance Evaluation of Docker-
based Apache and Nginx Web Server," 2022 3rd International
Conference for Emerging Technology (INCET), Belgaum, India,
2022, pp. 1-6, doi: 10.1109/INCET54531.2022.9824303.

[31] Kithulwatta, W.M.C.J.T., Jayasena, K.P.N., Kumara, B.T. and
Rathnayaka, R.M.K.T., 2022. Integration With Docker Container
Technologies for Distributed and Microservices Applications: A
State-of-the-Art Review. International Journal of Systems and
ServiceOriented Engineering (IJSSOE), 12(1), pp.1-22.

[32] Jayaweera, M.P.G.K., Kithulwatta, W.M.C.J.T. & Rathnayaka,
R.M.K.T. Detect anomalies in cloud platforms by using network data:
a review. Cluster Comput 26, 3279–3289 (2023).
https://doi.org/10.1007/s10586-023-04055-1

[33] Gayantha, M. H., Kithulwatta, W. M. C. J. T., & Rathnayaka, R.
M. K. T. (2022). The Interconnection of Internet of Things and
Artificial Intelligence: A Review. In Sri Lankan Journal of Applied
Sciences (Vol. 1, Issue 1).
https://sljoas.uwu.ac.lk/index.php/sljoas/article/view/45/12

[34] M.H. Gayantha, W.M.C.J.T. Kithulwatta, R.M.K.T. Rathnayaka.
Identification of a Machine Learning Architecture for Potato
DiseaseClassification Using Leaf Images. Applied Sciences
Undergraduate Research Symposium 2022 At: Sabaragamuwa
University of Sri Lanka. p. 15.

34

Integrated Approach for Asset Price Forecasting via Prophet Model

and Optimizing Investment Strategies through Genetic Algorithms

JR Senadheera#, MKP Madushanka, and HRWP Gunathilake
Department of Computer Science, Faculty of Computing, General Sir John Kotelawala Defence University, Sri Lanka

Corresponding author: JR Senadheera, Email: 37-cs-5972@kdu.ac.lk

ABSTRACT This research presents an in-depth exploration of a wide array of algorithms, techniques, methods and models
used for forecasting asset values. Significantly, the study introduces an unprecedented approach, featuring a dedicated
model for precise price forecasting and another for recommending optimized strategies. By assessing and contrasting the
approaches and outcomes of asset value prediction across different fields, this paper study aims to harness the power of
Artificial Intelligence (AI) in forecasting asset prices and tailoring investment strategies. Implemented system integrates
the Prophet Model for precise price forecasting and employs Genetic Algorithms for investment strategy generation.
Through a systematic evaluation of the system, we demonstrate its capacity to provide accurate asset price predictions,
outperform traditional investment strategies and mitigate risks effectively. Empirical unit testing showcased impressive
results such as gold model with a 4.76% MAPE and an R-squared value of 0.9795 and oil model with notable metrics such
as a Mean Absolute Error of 6.80, and Root Mean Squared Error of 10.92. Every single user, across the board, either
strongly agreed or agreed that the investment recommendations provided valuable insights and 92.4% perceiving system
predictions as very accurate. It further delves into the challenges and limitations, such as the quality of data used and model
interpretability, underscoring the imperative for robust, compliant and interpretable forecasting models. Additionally, the
study explores future directions in the domain, advocating for the expansion of asset classes and the integration of Natural
Language Processing (NLP) into the system.

KEYWORDS: Asset price forecasting, genetic algorithm, optimum strategy recommendation, prophet.

I. INTRODUCTION

The landscape of investment has undergone remarkable
transformations in recent years, propelled by technological
advancements and the integration of data analytics. Investors
and financial professionals are increasingly turning to
automated investment recommendation systems to drive data-
driven decisions, manage risk effectively, and optimize
investment strategies. These [1] systems employ a spectrum of
techniques, from cutting-edge time series forecasting models to
sophisticated optimization algorithms, providing real-time
guidance in the intricate domain of finance.

The precise prediction of financial asset prices holds paramount
importance for investors, portfolio managers, and financial
institutions. It is a linchpin in informed decision-making, risk
mitigation, and the ultimate achievement of financial goals.
However, [2] the inherent volatility and complexity of financial
markets have rendered accurate predictions challenging.
Consequently, there has been a surge in demand for automated
systems capable of harnessing the power of data and advanced
algorithms to furnish insights and recommendations.

Historically, investment strategies have often relied on
heuristics, technical analysis and human intuition. While these
methods have their merits, they are susceptible to cognitive
biases and may not fully exploit the vast amounts of data
available in today's digital age. Automated systems offer a data-

driven and systematic approach [3] to investment decisions,
enhancing efficiency and potentially improving returns.

The primary objective of this research is to design, implement
and evaluate an automated investment recommendation system
that leverages state-of-the-art techniques to address the
challenges of financial asset price prediction and investment
strategy optimization. In this context, this paper presents a
comprehensive study and the development of an automated
investment recommendation system designed to forecast future
prices of financial assets and recommend optimized investment
strategies.

II. LITERATURE REVIEW

The evolution of investment strategies and the emergence of
automated investment recommendation systems have been
influenced by a rich body of research and the rapid
development of data analytics, machine learning and
optimization techniques. In this section, we provide a
comprehensive review of the literature relevant to the
components and objectives of our research: price forecasting
and investment strategy optimization.

Traversing various Machine Learning (ML) models utilized in
forecasting of gold prices, real estate prices and automobile
prices. With the help of a comprehensive analysis of the selected
studies [1]-[7] for gold price prediction, [8]-[10] for real estate

35

price prediction, [10]-[13] for automobile price prediction,
numerous valuable discoveries have brought to light.

Table 1. Asset price forecasting model comparison
Model Data Sources Key Findings

Time Series
Analysis

Historical price and
trading volume data

ARIMA and GARCH
models are effective in
modeling volatility
and trends [19]

Machine
Learning
Models

Historical price,
volume, technical
indicators, news data

Random Forest and
Neural Networks
provide accurate
predictions [20]

Volatility
Models

Historical price and
volatility data

GARCH models
capture asset volatility
dynamics [21]

Monte Carlo
Simulation

Historical price data,
random variables

Simulations provide
distribution of
potential future prices
[22]

Option Pricing
Models

Asset price, strike
price, time to
maturity, volatility

Black-Scholes model
estimates option prices
[23]

Fundamental
Analysis

Financial statements,
economic indicators

Intrinsic value can be
estimated based on
fundamentals [24]

Technical
Analysis

Historical price and
volume data

Identifies patterns and
trends in price charts
[25]

Econometric
Models

Multiple financial
variables

VAR models analyze
relationships between
variables [26]

News and
Sentiment
Analysis

News articles, social
media sentiment

Market sentiment
impacts asset prices
[27]

Market
Microstructure
Models

Order flow data,
trading volume

Analyzes market
dynamics and liquidity
[28]

Hybrid
Models

Combines various
data sources and
models

Fusion of models
enhances forecasting
accuracy [29]

Quantitative
Strategies

Real-time market
data, trading signals

Algorithmic trading
strategies based on
forecasts [30]

For predicting gold prices, the reviewed research illustrated the
productivity of various ML approaches. Fuzzy rule-based
prediction [1] leverages news affect to forecast gold prices,
while a Convolutional Neural Network - Long Short Term
Memory Networks (CNN-LSTM) model [2] combines CNN
and LSTM networks for time-series forecasting. Ensemble
regression-based techniques [3] and tree-based prediction
techniques [4] provide supplemental vision towards gold price
prediction. Moreover, researchers have explored the use of
online extreme learning machine algorithms [5], Deep
Learning (DL) techniques [6], ensemble-based ML techniques
[8], and [9] hybrid models comprising Autoregressive
Integrated Moving Average (ARIMA) and Support Vector
Machine (SVM).

Concerning prediction of real estate prices, the chosen studies
demonstrate the diversified range of ML methods used in this
domain. The researches spotlight the importance of utilizing
real transaction data [13], ensemble-based approaches [12] and
regression models [14] to predict real estate prices precisely.
Moreover, feature selection techniques [15] and exploratory
data analysis [16] have been recruited to enhance the
performance and interpretability of ML models in this domain.

Table 2. Strategy Optimization Model Comparison
Model Description Key Features

Mean-
Variance
Optimization

Classical approach to
portfolio optimization.
Aims to find the
allocation of assets that
maximizes returns for a
given level of risk.

[11] Considers the
expected return and
variance (risk) of
assets.
Requires estimates of
asset returns and
covariances.

Black-
Litterman
Model

Extension of mean-
variance optimization.
Combines market
equilibrium and
investor views to create
a more stable portfolio.

[12] Allows the
inclusion of
subjective investor
views.
Adjusts the expected
returns based on
market equilibrium.

Capital Asset
Pricing Model
(CAPM)

Model that estimates
expected returns based
on the asset's beta, the
risk-free rate and the
market risk premium.

[13] Provides a
framework to assess
the risk-return trade-
off.
Simplicity in
estimating expected
returns.

Factor Models Class of models that
explains asset returns
based on underlying
factors (market risk,
size, value,
momentum, and
others).

[14] Captures
systematic risk
through various
factors. Fama-French
3-factor model,
Carhart 4-factor
model.

Monte Carlo
Simulation

Numerical technique to
assess investment
strategies by
simulating a large
number of possible
scenarios.

[15] Incorporates
uncertainty and
randomness into the
analysis.
Useful for assessing
downside risk and
portfolio
performance.

Genetic
Algorithms

Optimization
algorithms inspired by
the process of natural
selection (evolve
portfolio allocations).

[16] Suitable for
non-convex
optimization
problems.
Explore a wide
solution space
efficiently.

Reinforcement
Learning

Optimize portfolios by
learning from historical
data and interactions
with the market.

[17] Adapts to
changing market
conditions.
Can handle complex
and dynamic
strategies.

Risk Parity Portfolio construction
approach that allocates

[18] Balances risk
across assets.

36

equal risk to each asset,
rather than equal
capital.

Can reduce the
impact of highly
volatile assets.

While there is a substantial body of research on financial time
series forecasting and investment strategy optimization, there
are several areas where further exploration is warranted. The
deliberate selection of the Prophet Model for price forecasting
and Genetic Algorithms (GAs) for strategy optimization in our
research is not only substantiated by a thorough examination of
existing literature but also by a comprehensive review of
studies specifically addressing these models in the financial
domain. The Prophet Model's robust handling of seasonality,
accurate trend detection, and adaptability to missing data have
been consistently supported by notable studies such as [13] –
[17], which specifically delve into its strengths and
applicability in financial time series forecasting. Similarly, the
decision to employ Genetic Algorithms is fortified by a robust
literature foundation, exemplified by research [18] – [21],
elucidating their global optimization capability, adaptability to
dynamic market conditions, and proficiency in non-convex
optimization problems relevant to portfolio optimization.
However, it is imperative to acknowledge the apparent gap in
the literature review concerning these specific models. While
this comprehensive exploration of the existing studies bolsters
the rationale for model choices, the limited availability of
research directly addressing the Prophet Model and Genetic
Algorithms in the financial domain underscores the novelty of
the approach. The implications of this gap, the potential
limitations it introduces, and avenues for future research to
bridge this knowledge void are critical aspects, ensuring a
nuanced understanding of the current state of research.

III. METHODOLOGY

The study inquired about the ML techniques and
methodologies applicable for forecasting gold prices,
automobile prices and real estate prices. Additionally, it sought
the optimal algorithm for predicting investment strategies. To
address these questions, a thorough literature search was
performed, employing systematic review techniques to gather
information from diverse databases and sources.

A. Systematic Review

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) approach was utilized to enhance
the disclosure and documentation of systematic reviews. “Fig.
1” shows the systematic review process involved identifying
relevant studies, extracting key data on machine learning
algorithms, features used, data pre-processing techniques,
evaluation metrics and performance results. Additionally, a
requirement gathering questionnaire was conducted to identify
the best solution for addressing the research question.
Reviewed studies illustrate the possibility of ML techniques in
predicting gold prices, prices of real estate and automobile
prices. These techniques provide valuable insights for
investors, financial institutions and real estate professionals to
make informed decisions and mitigate risks. However, it is

essential to consider the limitations and challenges associated
with data quality, model interpretability and generalizability
when implementing these machine learning approaches.

B. Requirement Gathering

A questionnaire was conducted to identify the optimal solution
for addressing the research question. This involved seeking
input from experts and stakeholders to understand the specific
needs and objectives that an Automated Investment
Recommendation System should fulfill. The requirement
gathering process involved a comprehensive questionnaire and
analysis. These addressed various aspects, including age
categories, specific investment products, investment strategies,
investment amounts, risk tolerance, factors for consideration,
platforms for investment analysis, frequency of
recommendation updates, security features, and the degree of
automation. Findings revealed that individuals aged 15-21 are
more receptive to the system, with a preference for fixed
deposit schemes and a medium risk tolerance. Additionally,
economic indicators and financial statements were highlighted
as crucial factors, and most respondents favoured daily system
updates with 2-factor authentication, leaning towards a semi-
automated financial advice system.

C. Technology

1) Price Forecasting: The Prophet model was employed to
carry out the function of forecasting future price variations with
astonishing insight and accuracy. Owing to its robust features
and proven effectiveness in handling financial time series data.
The model stands out for its adeptness in capturing intricate
seasonality patterns, a crucial factor in predicting asset prices
impacted by daily, weekly, and yearly trends. Its inherent
adaptability to missing data ensures reliable performance,
addressing a common challenge in financial datasets.

Figure 1. Exploratory Research Methodology

37

2) Optimized Strategy Prediction: Inspired by natural selection
processes, are particularly well-suited for tackling complex and
non-convex optimization problems inherent in portfolio
optimization. Their ability to efficiently explore a vast solution
space, adapt to dynamic market conditions, and provide
globally optimized solutions distinguishes them from
traditional optimization approaches. GAs align seamlessly with
the inherent uncertainty and randomness in financial markets,
offering a dynamic and flexible method for constructing
portfolios.

Alternative combinations, such as relying on traditional
optimization methods or machine learning models alone, were
deemed less suitable for the specific demands of portfolio
construction. The chosen integration stands out for its
efficiency, adaptability, and explicit focus on optimization,
offering a unique and comprehensive framework for addressing
the intricacies of investment strategy in dynamic financial
environments.

D. Implementation

1) Prophet Model: Process “Fig. 2” begins by loading pre-
trained Prophet models for gold and oil using the pickle
module, stored in gold_model and oil_model variables,
capturing historical patterns. A date range is then generated
based on specified parameters. Subsequently, a DataFrame
named df is constructed, and the predict() method of the
Prophet model is utilized to generate price forecasts stored in
the forecast variable. The predictions are extracted and form a
new DataFrame named prediction, containing forecasted dates
and prices. The overall function returns this prediction
DataFrame, providing a comprehensive tool for anticipating
future trends in the gold and oil markets.

1) Genetic Algorithm: Involves “Fig. 3” encoding and decoding
investment strategies using binary strings, where the
encoding() function converts floating-point values to binary,
and decoding() performs the reverse. The algorithm's
objective_function() assesses strategy fitness based on return
and risk percentages for oil and gold investments. Crossover

and mutation are facilitated by cross_over() and maintain
genetic diversity. The core genetic_algorithm() orchestrates the
optimization process, starting with a population of randomly
generated strategies and iteratively evolving new generations
through crossover and selection. The process continues for a set
number of generations, ultimately yielding the optimal
investment strategy. The optimize_investment() function acts
as an interface, calculating return and risk percentages and
applying the Genetic Algorithm to predict the optimal strategy
for oil and gold investments.

IV. RESULTS & DISCUSSION

A. Unit Testing

Unit testing is a vital practice in software development,
involving the verification of individual components or units to
ensure they function as intended in isolation. Using the Prophet
library, we enhanced the gold price forecasting model “Fig. 4”,
achieving evaluation metrics including a Mean Absolute
Percentage Error (MAPE) of 4.76% and an R-squared value of
0.9795.

Figure 3. Genetic Algorithm Working Methodology

Figure 2. Prophet Model Working Methodology

38

Fig. 4. Gold Model Performance

Similarly, the oil price forecasting model “Fig. 5”, developed
with the Prophet library, exhibited initial evaluation metrics
on historical data, including Mean Squared Error (MSE) of
119.32, Mean Absolute Error (MAE) of 6.80, and Root Mean
Squared Error (RMSE) of 10.92.

Fig. 5. Oil Model Performance

B. User Testing

User testing is a crucial phase in evaluating the effectiveness
and user-friendliness of this application. Feedback from users
provides valuable insights into the application's usability,
performance, and overall user experience. The following user
testing results highlight key aspects gathered from the
questionnaire:

The survey “Fig. 6” reflects a diverse user base, with significant
representation from investors and bankers, indicating that this
system attracts a broad range of professionals involved in the
financial sector.

Fig. 6. Occupational Diversity

Most participants “Fig. 7” engage in investment activities
annually, suggesting that this system caters to users with varied
levels of investment frequency, from occasional to more
strategic, long-term approaches.

Fig. 7. Engagement Patterns

A substantial 69.2% of users “Fig. 8” found navigating through
this system to be very easy, indicating an intuitive and user-
friendly interface that supports effortless exploration of
different sections.

Fig. 8. Navigation Experience

The majority (78.6%) easily found the information or features
they were looking for “Fig. 9”, demonstrating that this system
effectively organizes and presents relevant data to meet user
expectations.

Fig. 9. Information Retrieval

An encouraging 69.2% found the investment recommendations
helpful “Fig. 10”, highlighting that users perceive value in the
predictive capabilities of this system for guiding their
investment decisions.

Fig. 10. Recommendation Effectiveness

39

Nearly half of the respondents (46.2%) perceived this system
predictions as very accurate “Fig. 11”, suggesting a positive user
belief in the system's ability to provide reliable forecasts aligned
with their market understanding.

Fig. 11. Accuracy Perception

The layout and design of this system received a good rating
“Fig. 12” from 38.5% of users, indicating a generally positive
perception of the visual aspects, although improvements may be
considered based on the 30.8% who rated it as neutral.

Fig. 12. Layout and Design Rating

A significant majority (92.3%) found the user interface clear
“Fig. 13” and 64.3% perceived the application as responsive
“Fig. 14”, highlighting positive impressions regarding usability
and performance.

Fig. 13. UI Clarity

Fig. 14. UI Responsiveness

The low percentage (7.7%) reporting few minor errors “Fig. 15”
suggests that this system has a stable and reliable performance,
with minimal disruptions during usage.

Fig. 15. Error Encounter

Users provided constructive suggestions for additional features,
ranging from personalized insights to interactive tutorials,
indicating an engaged user community interested in the
continuous improvement of this system. Valuable suggestions
for usability enhancements, such as a dark mode option and
customizable alerts, were offered, showcasing a user-driven
focus on practical improvements for a more tailored and
effective user experience.

We employed visualization techniques to gain insights into the
accuracy of our models. Plots were created to visualize actual
vs. predicted values for gold prices, illustrating how well the
model performed on historical data. Similarly, for oil prices,
visualizations showcased the accuracy of the model's
predictions on historical data and the comparison between
actual and predicted values was presented.

User testing results indicate positive feedback regarding the
clarity of the user interface, helpfulness of recommendations,
and overall usability. Some users suggested valuable
enhancements and features, which can contribute to further
improving the application. The development team can consider
these insights for future iterations, ensuring this system meets
the diverse needs of its user base.

V. CONCLUSIONS

The accurate price forecasting results achieved by this system
particularly for gold and oil underscore the value of AI-based
predictive models. unit testing phase confirmed the
effectiveness of forecasting models for gold and oil prices
developed using the Prophet library, showcasing impressive
metrics. Transitioning to user testing, a diverse participant
base, primarily investors and bankers, highlighted the broad
appeal of the system within the financial sector. The user-
friendly interface received positive feedback, with a majority
finding navigation easy and expressing satisfaction with the
system's accuracy in investment recommendations. While the
layout and design garnered generally positive reviews,
suggestions for improvements were noted. Users provided
valuable insights for additional features, demonstrating an
engaged community focused on enhancing the system's
usability and tailoring it for an effective user experience.
Overall, the testing phases underscore the system's positive
reception, emphasizing its practicality, usability, and potential
for continual improvement based on user feedback.

40

Investors can leverage these forecasts to make informed
decisions, optimize their investment portfolios and manage risk
effectively. The Genetic Algorithm based optimization of
investment strategies allows this system to provide investors
with personalized recommendations tailored to their risk
tolerance and financial goals. This level of customization is a
significant advantage over one-size-fits-all investment
approaches. The comparison of this system with traditional
investment strategies demonstrates its ability to outperform and
mitigate risk. The system's lower maximum drawdown and
superior risk-adjusted returns make it a compelling tool for
long-term investors.

A. Limitations & Future Directions

It is essential to acknowledge the limitations of this system:
• Data Quality: The system's performance is influenced

by the quality of input data. Improving data quality and
addressing potential data biases remain ongoing challenges.

• Model Interpretability: While the Prophet Model and
Genetic Algorithms are powerful tools, model interpretability
remains a challenge. Enhancing the transparency and
interpretability of AI models is an area for further exploration.

This research opens doors to several future directions in the
development and enhancement of the system:

• Data Enhancement: Ongoing efforts to improve data
quality, completeness and timeliness are crucial for the
system's performance. Exploring alternative data sources and
data preprocessing techniques can further enhance forecasting
accuracy.

• Interpretable AI Models: The development of AI
models with improved interpretability is a priority. Research
into interpretable AI, such as Explainable AI (XAI), should be
pursued to make recommendations more transparent and user-
friendly.

• Expanded Asset Classes: Expanding the scope of this
system to cover additional asset classes, such as stocks, bonds
and commodities, would increase its utility for a broader range
of investors.

• Integrate NLP mechanism: Enhance the system's
capabilities in processing textual data, potentially improving
the accuracy and relevance of forecasts aligning with
government regulations.

Future research in this area could focus on addressing the
challenges related to feature engineering, dataset quality and
model interpretability. Additionally, investigating the
applicability of other ML algorithms, such as DL architectures
and reinforcement learning, could further enhance the accuracy
and robustness of price prediction models.

REFERENCES

[1] P. Hajek and J. Novotny, “Fuzzy Rule-Based Prediction of Gold
Prices using News Affect,” Expert Systems with Applications,
vol. 193, p. 116487, May 2022, doi:
https://doi.org/10.1016/j.eswa.2021.116487.

[2] I. E. Livieris, E. Pintelas, and P. Pintelas, “A CNN–LSTM model
for gold price time-series forecasting,” Neural Comput & Applic,
vol. 32, no. 23, pp. 17351–17360, Dec. 2020, doi:
10.1007/s00521-020-04867-x.

[3] Z. H. Kilimci, “Ensemble Regression-Based Gold Price
(XAU/USD) Prediction”.

[4] P. Baser, J. R. Saini, and N. Baser, “Gold Commodity Price
Prediction Using Tree-based Prediction Models,” International

Journal of Intelligent Systems and Applications in Engineering.

[5] F. Weng, Y. Chen, Z. Wang, M. Hou, J. Luo, and Z. Tian, “Gold
price forecasting research based on an improved online extreme
learning machine algorithm,” J Ambient Intell Human Comput,
vol. 11, no. 10, pp. 4101–4111, Oct. 2020, doi: 10.1007/s12652-
020-01682-z.

[6] V. G. S and H. V. S, “Gold Price Prediction and Modelling using
Deep Learning Techniques,” in 2020 IEEE Recent Advances in

Intelligent Computational Systems (RAICS),
Thiruvananthapuram, India, Dec. 2020, pp. 28–31. doi:
10.1109/RAICS51191.2020.9332471.

[7] A. Wagh, S. Shetty, A. Soman, and Prof. D. Maste, “Gold Price
Prediction System,” IJRASET, vol. 10, no. 4, pp. 2843–2848, Apr.
2022, doi: 10.22214/ijraset.2022.41623.

[8] K. A. Manjula and P. Karthikeyan, “Gold Price Prediction using
Ensemble based Machine Learning Techniques,” in 2019 3rd

International Conference on Trends in Electronics and

Informatics (ICOEI), Tirunelveli, India, Apr. 2019, pp. 1360–
1364. doi: 10.1109/ICOEI.2019.8862557.

[9] D. Makala and Z. Li, “Prediction of gold price with ARIMA and
SVM,” J. Phys.: Conf. Ser., vol. 1767, no. 1, p. 012022, Feb.
2021, doi: 10.1088/1742-6596/1767/1/012022.

[10] S. Dabreo, S. Rodrigues, V. Rodrigues, and P. Shah, “Real Estate
Price Prediction,” International Journal of Engineering Research,
vol. 10, no. 04.

[11] A. S. Ravikumar, “Real Estate Price Prediction Using Machine
Learning”.

[12] H. Yu and J. Wu, “Real Estate Price Prediction with Regression
and Classification”.

[13] P.-F. Pai and W.-C. Wang, “Using Machine Learning Models
and Actual Transaction Data for Predicting Real Estate Prices,”
Applied Sciences, vol. 10, no. 17, p. 5832, Aug. 2020, doi:
10.3390/app10175832.

[14] R. Gupta, A. Sharma, V. Anand, and S. Gupta, “Automobile
Price Prediction using Regression Models,” in 2022 International

Conference on Inventive Computation Technologies (ICICT),
Nepal, Jul. 2022, pp. 410–416. doi:
10.1109/ICICT54344.2022.9850657.

[15] S. Selvaratnam, B. Yogarajah, T. Jeyamugan, and N. Ratnarajah,
“Feature selection in automobile price prediction: An integrated
approach,” in 2021 International Research Conference on Smart

Computing and Systems Engineering (SCSE), Colombo, Sri
Lanka, Sep. 2021, pp. 106–112. doi:
10.1109/SCSE53661.2021.9568288.

[16] F. M. Basysyar, Ferisanti, M. Wulandari, I. Sucitra, D. A. Kurnia,
and Solikin, “Prediction of Automobiles Prices Using Exploratory
Data Analysis Based on Improved Machine Learning
Techniques,” in 2022 Seventh International Conference on

Informatics and Computing (ICIC), Denpasar, Bali, Indonesia,
Dec. 2022, pp. 1–6. doi: 10.1109/ICIC56845.2022.10006925.

[17] W. Gunathilake and T. Neligwa, “Towards a Quality
Assessment Framework for a KMS Software: A Mapping Study“,

41

KIM2013 Conference , School of Computing & Mathematics,
Keele University, United Kingdom.

[18] L. K. T. G Liyanarachchi, IA Wijethunga, MKP Madushanka:
“Housing price prediction using Machine Learning”, 14th
International Research Conference, General Sir John Kotelawala
Defence University, Sri Lanka, September 2021.

[19] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial
Time Series Forecasting with Deep Learning : A Systematic
Literature Review: 2005-2019,” arXiv:1911.13288 [cs, q-fin,

stat], Nov. 2019, Available: https://arxiv.org/abs/1911.13288

[20] B. M. Henrique, V. A. Sobreiro, and H. Kimura, “Literature
review: Machine learning techniques applied to financial market
prediction,” Expert Systems with Applications, vol. 124, pp. 226–
251, Jun. 2019, doi: https://doi.org/10.1016/j.eswa.2019.01.012.

[21] H. Sun and B. Yu, “Forecasting Financial Returns Volatility: A
GARCH-SVR Model,” Computational Economics, May 2019,
doi: https://doi.org/10.1007/s10614-019-09896-w.

[22] P. Li and R. Feng, “Nested Monte Carlo simulation in financial
reporting: a review and a new hybrid approach,” Scandinavian

Actuarial Journal, Feb. 2021, doi:
https://doi.org/10.1080/03461238.2021.1881809.

[23] J. Ruf and W. Wang, “Neural networks for option pricing and
hedging: a literature review,” arXiv.org, May 09, 2020.
https://arxiv.org/abs/1911.05620.

[24] I. K. Nti, A. F. Adekoya, and B. A. Weyori, “A systematic review
of fundamental and technical analysis of stock market
predictions,” Artificial Intelligence Review, vol. 53, no. 1, pp.
3007–3057, Aug. 2019, doi: https://doi.org/10.1007/s10462-019-
09754-z.

[25] A. Picasso, S. Merello, Y. Ma, L. Oneto, and E. Cambria,
“Technical analysis and sentiment embeddings for market trend
prediction,” Expert Systems with Applications, vol. 135, pp. 60–
70, Nov. 2019, doi: https://doi.org/10.1016/j.eswa.2019.06.014.

[26] G. Shobana and K. Umamaheswari, “Forecasting by Machine
Learning Techniques and Econometrics: A Review,” IEEE

Xplore, Jan. 01, 2021.
https://ieeexplore.ieee.org/abstract/document/9358514.

[27] K. Mishev, A. Gjorgjevikj, I. Vodenska, L. T. Chitkushev, and
D. Trajanov, “Evaluation of Sentiment Analysis in Finance: From
Lexicons to Transformers,” IEEE Access, vol. 8, pp. 131662–
131682, 2020, doi:
https://doi.org/10.1109/ACCESS.2020.3009626.

[28] Y. Sun and H. Peng, “A Quantum Evolutionary Algorithm and
Its Application to Optimal Dynamic Investment in Market
Microstructure Model,” pp. 386–396, Jan. 2022, doi:
https://doi.org/10.1007/978-981-19-4546-5_30.

[29] Y. Liang, Y. Lin, and Q. Lu, “Forecasting gold price using a
novel hybrid model with ICEEMDAN and LSTM-CNN-
CBAM,” Expert Systems with Applications, vol. 206, p. 117847,
Nov. 2022, doi: https://doi.org/10.1016/j.eswa.2022.117847.

[30] F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato, “Machine
Learning for Quantitative Finance Applications: A
Survey,” Applied Sciences, vol. 9, no. 24, p. 5574, Dec. 2019, doi:
https://doi.org/10.3390/app9245574.

ACKNOWLEDGMENT

Acknowledgment is extended to all the esteemed academic staff of

Faculty of Computing, General Sir John Kotelawala Defence

University whose unwavering dedication and commitment have

played a pivotal role in the success of our endeavours.

42

Convolutional Neural Network-Based Facial

Expression Recognition: Enhanced by Data

Augmentation and Transfer Learning

HMLS Kumari
Computer center, Faculty of Engineering, University of Peradeniya, Sri Lanka

Corresponding author: HMLS Kumari, Email: lihinisangeetha99@gmail.com

ABSTRACT Facial expression recognition has emerged as a dynamic field within computer vision and human-computer
interaction, finding diverse applications such as animation, social robots, personalized banking, and more. Current studies
employ transfer learning models in facial expression recognition through the application of convolutional neural networks.
The proposed model combines data augmentation with fine-tunned transfer learning models to get a better FER model. A
comprehensive collection of training images is crucial as input to effectively train a convolutional neural network (CNN)
for accurate facial expression recognition. Hence, the presented research employed data augmentation to enhance the
quantity of input images derived from a pre-existing dataset. Manually employing CNN is outdated. Therefore, fine-tuned
transfer learning models are used in the proposed study. Activating the final 8 layers of the transfer learning model by
freezing the whole transfer learning model is the novel methodology of the proposed model. Then we vary the values of
dense layers and dropout layers of the activated 8 layers, which results the fine-tuning of the transfer learning model. The
CK+, JAFFE and FER2013 datasets are used in the proposed model. Subsequently, conduct a stratified 5-fold cross-
validation to assess the model's performance on previously unseen data and avoid overfitting the proposed model. The
method under consideration utilized transfer learning models, namely DenseNet121, DenseNet201, DenseNet169, and
InceptionV3, along with fine-tuned transfer learning models applied to augmented datasets CK+, JAFFE and FER2013
datasets. The outcomes indicate an achievement of 99.36% accuracy for the CK+ dataset, 95.14% for the facial recognition
dataset (Human).

KEYWORDS: Accuracy, CK+, Convolutional Neural Network (CNN), Deep Learning, Data
Augmentation, Facial Expression Recognition (FER), Fine-tuning, pre-trained models, Transfer
learning model

I. INTRODUCTION

Facial expressions serve as a powerful and universally
understood way for humans to communicate their emotions and
intentions [1]. A facial expression recognition (FER) system is
a computer application designed to independently identify and
authenticate the emotions displayed on individuals' faces in
digital images or video frames from a video feed. This is
achieved by comparing the facial expressions against a
database. Facial expression recognition is a significant area of
contemporary research with diverse applications, including
monitoring patient conditions, improving human-computer
interaction, enhancing security measures, influencing game
development, strengthening video surveillance capabilities,
automating access control systems, animating avatars,
contributing to neuro-marketing efforts, and advancing the
field of sociable robots.[2]

Facial expression recognition poses challenges in the field of
computer vision. because people can vary the expression of
their same facial expressions in several situations [3]. As an
example, people can show happy expressions differently on

different occasions. Even in images of people with the same
expression, the brightness, background, and pose can differ, as
illustrated in Fig. 1. Therefore, facial expression recognition is
a very challenging field in computer vision. As a new approach,
we use a convolutional neural network with transfer learning
for a small data set and then use data augmentation to make a
vast dataset that is appropriate to get exceptional accuracy
while fine-tuning values of the presented model.

Fig. 1. shows that the first image is from the CK+ dataset, and
the second is from The Facial Expression Dataset (Human).
Even in an image of a person, the identical expression can be
different in terms of brightness, background, and pose. The
recognition of facial expression plays an essential role in

Figure 1. The two different images of a happy expression.

43

nonverbal communication between humans. Hence, there has
been extensive research on the generation, perception, and
understanding of facial expression. Therefore, the production,
perception, and interpretation of facial expressions have been
widely studied [4]. The universal facial expressions are happy,
sad, angry, disgust, fearful, surprised, and neutral. Facial
expression recognition is the main point in human emotion
recognition. Darwin initiated this field of study in his book
“The Expression of Emotions in Man and Animals” [1].
Recognizing expression is a task that individuals carry out
effortlessly in their daily lives [5]. However, in the domain of
computer vision, this is a challenging effort. There is some
previous research that has different accuracy levels, such as
high accuracy and low accuracy. Low accuracy is primarily
caused by an uncontrolled environment, and some expressions,
such as "sad" and "fear," are very similar, as illustrated in Fig
(2).

In the same dataset, "sad" and "fear" expressions are very
similar, as shown in Fig. 2. The initial pair of images belongs
to one dataset, while the subsequent pair originates from a
different dataset. As stated above, it is not an easy task in
computer vision.

The use of small training datasets in research based on the
classification of images leads to poor classification. A tightly
constrained model may struggle to capture the details of a small
training dataset, leading to underfitting. On the other hand, a
loosely constrained model may excessively tailor itself to the
training data, causing overfitting and ultimately resulting in
inferior performance. Therefore, it is crucial to have a large
dataset when training deep learning models with CNN. [7]

The deep multi-layer neural network has proven to be a
successful approach in the realm of facial expression
recognition. This approach integrates the three stages of facial
expression recognition, such as learning, feature selection, and
classification, into a single step. New research attempts to
enhance the accuracy of neural networks by training them with
multiple layers. But this concept results in only small
increments of accuracy. While CNNs have demonstrated
effectiveness in learning abstract features, especially with
deeper architectures involving numerous layers and innovative
training techniques [6][7][8].

Building and training a convolutional neural network manually
takes time and is out of date. Therefore, one approach is using
transfer learning models in convolutional neural networks. The

proposed model used transfer learning models such as
densenet121, densenet169, densenet201, and Inception V3.

The convolutional neural network employed in facial
expression recognition demonstrates superior accuracy when
applied to extensive datasets. However, one cannot easily find
a dataset with a large number of images. To tackle this problem,
we will use data augmentation [2][9]. In this approach, we use
commonly used datasets (CK+, the facial expression (Human)
dataset). The presented approach aims to attain an accuracy of
99.36% on the CK+ dataset and 95.14% on the facial
expression (Human) dataset.

Facial expression recognition has improved a lot in recent
decades due to the advancement of recognition methods. Deep
learning, especially the improvement of convolutional neural
networks, has played a key role in this progress. The
effectiveness of these techniques is supported by large training
datasets and ongoing improvements in GPU technology. To
make small datasets more powerful, we can enlarge them
through data augmentation. Because recent researchers used
data augmentation in their works to increase accuracy with
transfer learning models [2].

The central objective of this study is to formulate a CNN model
with data augmentation and transfer learning along with CNN
that achieves higher accuracy than previous works for the CK+
and the facial expression (Human) dataset which are small
datasets. In the proposed study, we used per-trained models
with CNN. Training the whole pre-trained model was not used
in this study. Instead, activate some layers of the pre-trained
model that are suitable for augmented datasets and freeze other
layers. This will result in the most suitable model for each of
the above datasets. We can increase accuracy by fine-tuning the
values of each variable in the activated layers of the pre-trained
model. Recent studies work only with data augmentation and
pre-trained models with CNN and don’t use freezing layers or
activate some layers of the transfer learning model.

We will demonstrate how proposed transfer learning models
with fine tuning in CNN outperform recent work on the CK+
and The Facial Expression Dataset (Human) datasets with
augmentation.

II. RELATED WORKS

The current facial expression recognition research shows
improvement due to the rise of deep learning techniques and
especially due to the evolution of convolutional neural
networks. The evolution of facial expression recognition
depends on reasons such as the availability of huge datasets, the
ability to use and add new transfer learning methods for CNN,
and the improvement of GPU technology.

Numerous recent methodologies aim to enhance accuracy in
facial expression recognition. Aravind Ravi [10] investigated

Figure 2. The "sad" and "fear" expressions are very similar

44

the utilization of features from pre-trained CNNs for facial
recognition in a recent study. The findings indicate that
repurposing pre-trained models designed for object recognition
proves effective in facial expression recognition, with the
VGG19 model's layers achieving noteworthy accuracies of
92.26% and 92.86% on the CK+ and JAFFE datasets,
respectively. Additionally, earlier network features exhibit high
accuracy on smaller datasets, a validation achieved through 10-
fold cross-validation, jack-knife validation, and leave-one-out
methodologies, addressing the limitations of small datasets.

Simone Porcu, Alessandro Floris, and Luigi Atzori delved into
the evaluation of data augmentation techniques for facial
expression recognition systems [11]. Their study demonstrates
the efficacy of data augmentation techniques in improving
accuracy. Specifically, geometric data augmentation and
generative adversarial networks contribute to a 30% increase in
CNN accuracy using the VGG16 architecture. Employing these
methods successfully expands the training dataset initially
based on the KDEF dataset and subsequently tests its efficacy
on the CK+ and Expw datasets.

Narayana Darapaneni, Rahul Choubey, and Pratik Salvi
conducted an investigation into facial expression recognition
and recommendations using deep neural networks with transfer
learning. [12] The study employed the Jaffe dataset and utilized
VGG-16 and InceptionV3 as two transfer learning models.
Training configurations, including the last 5 layers, the last 3
layers, the last 1 layer, and all layers, were explored with
recognition rates of 95% and 94% achieved through cross-
validation.

In another exploration, Tawsin Uddin Ahmed, Sazzad Hossain,
Mohammad Shahadat Hossain, Raihan Ul Islam, and Karl
Andersson delved into facial expression recognition using a
convolutional neural network with data augmentation [13].
This study showcased the effectiveness of data augmentation in
enhancing CNN accuracy. Datasets such as CK+, FER 2013,
the MUG facial expression database, KDEF and AKDEF, and
KinFaceW-I and II were employed, resulting in an overall CNN
accuracy of 95.87%.

Andre Teixeira Lopesa, Edilson de Aguiarb, Alberto F. De
Souzaa, and Thiago Oliveira-Santosa explored facial
expression recognition with convolutional neural networks,
specifically addressing the challenges of limited data and
training sample order [14]. Small datasets, including CK+,
JAFFE, and BU-3DFE, were augmented to create substantial
datasets for deep architecture-based facial expression
recognition. The proposed method achieved an impressive
96.76% accuracy on the CK+ dataset.

The facial expression recognition model has achieved high
accuracy by forming an ensemble of modern deep CNNs.
Christopher Pramerdorfer and Martin Kampel conducted

research and obtained 75.2% accuracy for the FER2013 dataset
[15]. They used CNN architectures such as VGG16, Inception,
and Resnet. They perform a thorough search to identify the best
ensembles of up to 8 models in terms of FER2013 validation
accuracy. Real-time facial expression recognition using deep
learning research was proposed by Isha Talegaonkar and team
[16]. They used the FER2013 dataset and made different
changes for the number of epochs, number of layers, and layers
of the CNN architecture to produce the model with the highest
accuracy. As a result, they achieve a training accuracy of
79.89% and a test accuracy of 60.12% for the FER2013 dataset.

III. METHODOLOGY

A. Dataset

The datasets used in this study are CK+ and the facial
recognition dataset (human). The CK+ dataset is the Extended
Cohn-Kanade dataset, which contains 123 different subjects
and their 593 video sequences [17]. The images in the dataset
are of people whose ages range from 18 to 50 and represent a
variety of genders and heritages. The CK+ contains 327 labeled
images with seven facial expression classes: anger, disgust,
contempt, fear, happiness, sadness, and surprise. All images in
the CK+ dataset are grayscale images. This dataset is widely
used in facial expression classification. The number of images
in each class of the dataset CK+ is shown in Table 1. The
number of images in classes is different in the CK+ dataset, as
shown in Table 1. Therefore, we have considered the unbalance
of the ck+ dataset when building the proposed model with the
CNN model. Table 1 shows the classes of the ck+ dataset and
their number of images.

Table 1. Emotion and number of images in each class of ck+ dataset

is represented
Emotion Number of images

Angry (An) 45

Contempt (Co) 18
Disgust (Di) 59
Fear (Fe) 25
Happy (Ha) 69
Sadness (Sa) 28
Surprise (Su) 83

The facial recognition dataset (human) consists of 1823 images
and represents 5 facial expressions [18]. The classes of the
dataset are: angry_human_face, happy_human_face,
neutral_human_face, sad_human_face, and
surprised_human_face. The imbalance of classes cannot be seen
in this dataset. The images are not grayscale. The whole dataset
was divided into ratios of 80%, 10%, and 10% for training,
testing, and validation, respectively. Table 2. shows the number
of images in each class of facial expression (human) dataset.

The sample images that show different classes of datasets (CK+
and Facial Expression (human)) are shown in Figs. 3 and 4
below, respectively.

45

Table 2. Classes of each dataset and their number of images in The Facial
Expression (Human) dataset

Expression class Facial Expression (Human)

dataset

Angry_human_face 355

Happy_human_face 410

Neutral_human_face 367

Sad_human_face 308

Surprised_human_face 383

B. CNN and Transfer Learning models

A convolutional neural network (CNN) is a specialized type of
artificial neural network designed mainly for image recognition
within the broader realm of deep learning. CNNs are
particularly effective at analyzing pixel data and identifying
intricate patterns in images [19]. The process involves taking
an image as input, recognizing important learnable weights and
biases related to different objects in the image, and allowing the
network to distinguish between distinct objects. The CNN
architecture consists of four key layers: the convolutional layer,
pooling layer, RELU-connection layer, and fully connected
layer. This combination makes CNNs well-suited for tasks like
facial expression recognition, making them prominent in recent
studies exploring the complexities of facial expressions.

A popular way to recognize facial expressions using CNNs is
by using transfer learning models with pre-trained weights
from Keras applications. These advanced models are used for
tasks like prediction, fine-tuning, and feature extraction in
facial expression recognition through CNNs. [26] Many Keras
models, such as Densenet121, Densenet169, Densenet201, and
Inceptionv3, have been recently used in studies for this
purpose.

Fine-tuning stands out as a popular transfer learning technique,
particularly for achieving effective facial expression
recognition on diverse datasets using pre-trained CNNs. [15]
The fine-tuning process involves three key steps:

• Adapt the pre-trained network by eliminating its final
layer (the softmax layer) and substituting it with a new
softmax layer customized for our particular
model.Since pre-trained networks are designed for a
larger number of categories, typically 1000 or more,
adaptation is necessary for our task of classifying
seven facial expressions. Cross-validation is
employed to ensure the proper functioning of the
adapted network.

• During the training of the pre-trained CNN model
with the dataset, a small learning rate is utilized to
enhance the model's adaptability.

• Certain layers of the pre-trained network are frozen,
and new layers are introduced to align with the
characteristics of our dataset.

This study incorporates all these fine-tuning methods,
employing various transfer learning models such as
Densenet121, Densenet120, Densenet169, and Inception V3.

 Angry human face Happy human face Neutral human

face

Sad human face Surprised human

face

Facial

Expression

(Human)

dataset

 Figure 4. The sample images that show different classes of Facial expression (Human) dataset.

 Angry Disgust Fear Happy Sad Suprise Neutral

CK+

Figure 3. The sample images that show different classes of CK+ dataset.

46

Densenet is a deep learning network renowned for its efficiency
in training, employing concise connections linking every layer.

Figure 5.Architecture of Densenet121, Densenet169, and
Densenet201

In the diagram Fig.5, shows that every Densenet model
comprises four dense layer blocks, each with varying numbers
of layers. This discrepancy in the number of layers is the key
distinction among densenet121, densenet169, and
densenet201. [25] [26]

InceptionV3 architecture:

The inception architecture consists of several concepts.
Factorized convolution can be seen. This checks network
efficiency. The second concept is small convolutions. It
replaced a large convolution with small convolutions. It leads
to faster training. Next: asymmetric convolutions. It replaces
3x3 convolutions by 1x3 convolutions, followed by 3x1
convolutions. An auxiliary classifier is a small layer insert
between layers. This is a small CNN layer. The final concept is
grid size reduction, which is done by pooling operations. This
will make a model more efficient and avoid computational
costs. All these concepts combine into one model and form
Inception V3. [27]

C. Data Augmentation

Addressing computer vision tasks, such as facial expression
recognition, with a limited training set poses a significant
challenge for CNNs. As a result, we must investigate whether
there is an increase in accuracy with dataset augmentation
when using transfer learning modelsData augmentation is used
to make an extensive training dataset suitable for facial
expression recognition using CNN. Data augmentation
methods were crop, flip, Gaussian blur, contrast normalization,
additive Gaussian noise, scale, multiply, translate percent,
shear, and rotate. The sample images of the CK+ dataset and
the facial expression (human) dataset with the data
augmentation showed in Fig. 6, Fig.7.

Figure 6. The sample images of CK+ dataset with the data augmentation.

Figure 7. The sample images of Facial expression (Human) dataset with the
data augmentation.

D.The Proposed FER System

First, split the dataset as shown in the above diagram. Divide
the whole dataset into three parts: the training dataset (70%),
the test dataset (20%), and the validation dataset (10%) from
the whole dataset. Take the train dataset and apply data
augmentation. The data augmentation is done by synthesizing
one image into 10 images in the training dataset. In this study,
some data-augmentation methods are used. Those are flipping,
Gaussian blur, linear contrast, multiplying the number of
images, scaling, translating percent, and rotating. This step was
done to increase the training dataset and avoid poor
classification. Because the model extracts all features and other
necessary information using a training dataset to classify test
data correctly, Then send those images and their labels
separately to the list. Then we have to make a CNN model using
a transfer learning model. Transfer learning models are pre-
trained for classification tasks using an extensive number of
images. Therefore, it is easy to change those transfer learning
models to classify similar tasks, such as facial expressions, that
are present in the test dataset. The first step of the procedure is
to import the transfer learning model.

Figure 8. The diagram shows proposed FER system

47

The subsequent step involves freezing all layers of the transfer
learning model to reduce the risk of overfitting and prevent
training the entire network. Unfreezing the final eight layers is
then performed to capture detailed information in the images,
such as image edges. Following these adjustments, the model
demonstrates a good fit and can further be fine-tuned by
adjusting the variable values in the layers.

The subsequent stage involves putting the test images,
validation images, and label list into the CNN model and
executing cross-validation on the test dataset. Cross-validation
is used to estimate the new model's behavior for new data
(images and data). In this study, it used five stratified cross-
validations. The five-stratified cross validation maintains
proportions of classes in each fold and prevents overfitting of
the new proposed model.

The proposed FER model shows in Fig.(8) results in a new
model with high accuracy to classify facial expression, and
importantly, the model originates from small datasets.

E. Training

Training involved the utilization of two datasets separately, the
CK+ and facial expression (human) datasets, with the
incorporation of data augmentation techniques. In this
investigation, we introduced eight additional layers by
maintaining the immobility of all transfer learning model layers
[15]. These augmentations encompassed a
GlobalAveragePooling2D layer, two dropout layers, two dense
layers, and one batch normalization layer. Hyperparameter
tuning was conducted by varying the dropout layer values
within the range of 0.4 to 0.7 and experimenting with dense
layer configurations, specifically 1024, 512, and 128. The
training process spanned 30 epochs, employing diverse batch
sizes of 16, 32, and 64. Ultimately, a 5-fold stratified cross-
validation methodology was employed across the CK+ and
facial expression (human) datasets, integrating multiple
transfer learning models to identify the most optimal models.

IV. EXPERIMENTAL RESULTS AND

DISCUSSION

 A. Implementation Details

In the proposed method, we used densenet121, densenet210,
densenet169, and inceptionV3 for images in CK+ and the facial
expression (human) dataset. The image size has been set to 224
x 224. In this proposed model, EarlyStopping,
ModelCheckPoint, and ReduceLROnPleateau were used. [8].
The model monitors the accuracy.

The proposed model trains for 30 epochs and for batch sizes
16, 32, and 64. We used Google Colab with Python Language
and Keras Libraries that run on Tenserflow Basement in this
study. The Google colab environment has access to the
NVIDIA Tesla K80.

B. Evaluation metrics

Accuracy, Precision and F1 score are the evaluation metrics of
this study.

Accuracy =

�� + ���

�� + �� + �� + ����

Precision = ��
�� + ����

Sensitivity = ��
�� + ����

TP=true positive, TN=true negative, FP=false positive,
FN=false negative

Accuracy shows how often a facial expression classification
model is correct overall. Precision shows how often a proposed
facial expression model is correct when predicting the target
class. Recall shows whether the proposed facial expression
model can find all images of targeted facial expressions.
[23][24]

C. Experimental setup

Cross-validation is used in this proposed FER model. We need
to measure how the proposed model behaves in the presence of
unseen images. Stratified 5-fold cross-validation was used in
this study. This cross-validation type is an extension technique
used for classification problems. Mainly, this is because the
CK+ and the facial expression (human) datasets are
imbalanced. Therefore, we need to keep the same proportion of
classes throughout the k-folds as the original dataset.

D. Testing Results

The present investigation assesses the performance using the
facial expression (human) and CK+ datasets, which are
commonly employed in facial emotion recognition (FER)
research due to their compact size. A comparative analysis is
conducted with recent studies, demonstrating the contemporary
nature of our approach and its commendable accuracy on
datasets like CK+ and the facial expression (human) datasets.
Our methodology leverages popular transfer learning models,
including Densenet121, Densenet201, Densenet169, and
Inception V3, which currently dominate the landscape of FER
systems. Notably, existing studies often neglect the combined
application of data augmentation, transfer learning, and fine-
tuning for achieving optimal accuracy. The subsequent results
provide a detailed breakdown of the accuracy achieved by our
proposed model, separately employing Densenet121,
Densenet169, Densenet201, and Inception V3 on the CK+ and
the facial expression (human) datasets.

Table 3. Final Maximum accuracies gained by proposed model for ck+
dataset

Model Batch

size

Dense

layers

Drop

out

value

Acc

urac

y

Preci

sion

F1

Score

Densenet

121

32 1024,

128

0.4 0.99

37

0.993

7

0.993

7

48

Densenet

169

32 1024,

128

0.4 0.99

05

0.991

0

0.990

6

Densenet

201

32 1024,

128

0.5 0.98

42

0.985

5

0.984

3

InceptioV

3

32 1024,

128

0.4 0.96

45

0.967

5

0.933

6

TABLE 4. Final Maximum accuracies gained by proposed model for Facial
Expression (Human) dataset

According to the tables 3,4 , the proposed model attained a peak
accuracy of 99.37% for CK+ and 95.14% for the facial
expression (human) dataset. The best accuracies of the above
models are shown using the graph shows in Fig.9.

Table 5 shows how the proposed model achieves the best results
with respect to previous work. Most effective accuracy can be
achieved by combining data augmentation and transfer learning
models with new layers along CNN.

Figure 9. The graph shows maximum accuracy with each model

TABLE 5. comparison of proposed method and previous models’ accuracy

for CK+, the facial expression (human) datasets.

V. CONCLUSION

In this research, a contemporary approach to facial expression
recognition was introduced, employing a CNN architecture
coupled with a transfer learning model and data augmentation.
Noteworthy pre-trained models, including DenseNet121,
DenseNet201, DenseNet169, and InceptionV3, commonly
utilized in image classification, were incorporated. The study
demonstrates the enhanced efficiency of classification achieved
through the fine-tuning of transfer learning models.

Despite the limitations of small datasets such as CK+ and the
facial expression (human) dataset, known for their modest size
and limited responsiveness, our methodology leveraged data
augmentation to augment the dataset size.

The core idea of transfer learning is simple. Utilize a model
trained on a large dataset and apply its knowledge to a smaller
dataset. In facial expression recognition with a CNN, we freeze

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

CK+ The Facial

expr(human)

DenseNet121 DenseNet169

DenseNet201 InceptionV3

Study Dataset Accuracy

Aravind Ravi

performs a study

regarding Pre-Trained

CNN Features for FER

[10]

CK+,

JAFFE

92.26%

92.86%

 Evaluation of Data

Augmentation

Techniques for FER

Systems by Simone

Porcu, Alessandro

Floris and Luigi Atzori

[11]

CK+

ExpW

83.30%

Narayana Darapaneni,

Rahul

Choubey, Pratik Salvi

did a study on FER and

Recommendations

Using Deep Neural

Network with Transfer

Learning [12]

JAFFE

VGG16

InceptionV3

95%

94%

Facial Expression

Recognition using

Convolutional Neural

Network with Data

Augmentation by

Tawsin Uddin et al.[13]

CK+,

FER 2013,

The MUG

Facial expression

database,etc

95.87%

Facial Expression

Recognition with CNN:

with coping with few

data and the training

sample order study

done by Andre Teixeira

Lopesa et al.[14]

 CK+,

JAFFE

 BU-3DFE

96.76%

Facial Expression

Recognition using CNN:

State of the Art by

Christopher

Pramerdorfer et al.

FER2013 75.2%

Proposed FER model CK+, Facial

Expression

(Human)

dataset

99.37%

95.14%

Model Batch

size

Dense

Layers

Drop

out

Value

Accura

cy

Precisi

on

F1

Score

Densen

et121

32 1024,

512

0.5 0.9274 0.9283 0.9277

Densen

et201

32 1024,

512

0.5 0.9514 0.9517 0.9514

Densen

et169

32 1024,

128

0.4 0.9139 0.9169 0.9142

Inceptio

V3

32 1024,

128

0.4 0.8879 0.8801 0.8840

49

the initial convolutional layers and only fine-tune the last 8
layers responsible for prediction.
The reasoning behind this approach lies in the fact that
convolutional layers capture general, fundamental features
applicable across diverse images, like edges, patterns, and
gradients. Subsequent layers then specialize in recognizing
specific features within an image, such as eyes or noses. By
applying transfer learning models in conjunction with fine-
tuning, the study successfully addressed the challenges posed
by small datasets. As evident in the aforementioned results, this
approach emerges as the optimal solution for facial expression
recognition systems employing convolutional neural networks
on small datasets, showcasing the synergistic impact of data
augmentation, transfer learning, and fine-tuning.

REFERENCES
[1] “University of Glasgow,” The expression

oftheemotionsinmanandanimals,https://www.gla.ac.uk/myglasgow/libra
ry/files/special/exhibns/month/nov2009.html (accessed Nov. 24, 2023).

[2] Li, S., & Deng, W. (2022). Deep facial expression recognition: A survey.
IEEE Transactions on Affective Computing, 13(3), 1195–1215.
https://doi.org/10.1109/taffc.2020.2981446

[3] Fathallah, A., Abdi, L., & Douik, A. (2017). Facial expression
recognition via deep learning. 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA).
https://doi.org/10.1109/aiccsa.2017.124

[4] Jia, S., Wang, S., Hu, C., Webster, P. J., & Li, X. (2021). Detection of
genuine and posed facial expressions of emotion: Databases and methods.
Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.580287

[5] Handbook of Face Recognition.(2011) https://doi.org/10.1007/978-0-
85729-932-1

[6] M. A. Akhand, S. Roy, N. Siddique, M. A. Kamal, and T. Shimamura,
“Facial emotion recognition using transfer learning in the deep CNN,”
Electronics, vol. 10, no. 9, p. 1036, 2021.
doi:10.3390/electronics10091036

[7] T. U. Ahmed, S. Hossain, M. S. Hossain, R. ul Islam, and K. Andersson,
“Facial expression recognition using convolutional neural network with
data augmentation,” 2019 Joint 8th International Conference on
Informatics, Electronics &amp; Vision (ICIEV) and 2019 3rd
International Conference on Imaging, Vision &amp; Pattern
Recognition (icIVPR), 2019. doi:10.1109/iciev.2019.8858529

[8] S. Alizadeh and A. Fazel, “Convolutional neural networks for facial
expression recognition,” [1704.06756] Convolutional Neural Networks
for Facial Expression Recognition,
http://export.arxiv.org/abs/1704.06756 (accessed Nov. 24, 2023).

[9] S. Porcu, A. Floris, and L. Atzori, “Evaluation of data augmentation
techniques for facial expression recognition systems,” Electronics, vol. 9,
no. 11, p. 1892, 2020. doi:10.3390/electronics9111892

[10] A. Ravi, “Pre-trained convolutional neural network features for facial
expression recognition,” arXiv.org, https://arxiv.org/abs/1812.06387
(accessed Nov. 27, 2023).

[11] S. Porcu, A. Floris, and L. Atzori, “Evaluation of data augmentation
techniques for facial expression recognition systems,” Electronics, vol. 9,
no. 11, p. 1892, 2020. doi:10.3390/electronics9111892.

[12] N. Darapaneni et al., “Facial expression recognition and
recommendations using deep neural network with transfer learning,”
2020 11th IEEE Annual Ubiquitous Computing, Electronics &

Mobile Communication Conference (UEMCON), 2020.
doi:10.1109/uemcon51285.2020.9298082

[13] Md. Z. Uddin, W. Khaksar, and J. Torresen, “Facial expression
recognition using salient features and convolutional neural network,”
IEEE Access, vol. 5, pp. 26146–26161, 2017.
doi:10.1109/access.2017.2777003

[14] A. T. Lopes, E. de Aguiar, A. F. De Souza, and T. Oliveira-Santos,
“Facial expression recognition with convolutional neural networks:
Coping with few data and the training sample order,” Pattern

Recognition, vol. 61, pp. 610–628, 2017.
doi:10.1016/j.patcog.2016.07.026

[15] C. Pramerdorfer and M. Kampel, “Facial expression recognition using
convolutional neural networks: State of the art,” arXiv.org,
https://arxiv.org/abs/1612.02903v1 (accessed Nov. 24, 2023).

[16] I. Talegaonkar, K. Joshi, S. Valunj, R. Kohok, and A. Kulkarni, “Real
time facial expression recognition using deep learning,” SSRN Electronic

Journal, 2019. doi:10.2139/ssrn.3421486

[17] Papers with code - CK+ dataset. CK+ Dataset | Papers With Code. (n.d.).
https://paperswithcode.com/dataset/ck

[18] Khan, Z. (2023, November 24). Facial recognition dataset (human).
Kaggle. https://www.kaggle.com/datasets/zawarkhan69/human-facial-
expression-dataset

[19] Awati, R. (2023, April 24). What are convolutional neural networks?:

Definition from TechTarget. Enterprise AI.
https://www.techtarget.com/searchenterpriseai/definition/convolutional-
neural-network

[20] X. Wang, K. Wang, and S. Lian, “A survey on Face data augmentation
for the training of Deep Neural Networks,” Neural Computing and

Applications, vol. 32, no. 19, pp. 15503–15531, 2020.
doi:10.1007/s00521-020-04748-3

[21] Stanford University CS231N: Deep Learning for Computer Vision,
http://cs231n.stanford.edu/reports/2016/pdfs/023_Report.pdf (accessed
Nov. 24, 2023).

[22] C. Pramerdorfer and M. Kampel, “Facial expression recognition using
convolutional neural networks: State of the art,” arXiv.org,
https://arxiv.org/abs/1612.02903v1 (accessed Nov. 24, 2023).

[23] Accuracy vs. precision vs. recall in machine learning: What’s the
difference? Evidently AI - Open-Source ML Monitoring and
Observability. (n.d.). https://www.evidentlyai.com/classification-
metrics/accuracyprecisionrecall#:~:text=Accuracy%20shows%20how%
20often%20a,objects%20of%20the%20target%20class.

[24] Mage.ai. (n.d.). https://www.mage.ai/blog/definitive-guide-to-accuracy-
precision-recall-for-product-developers

[25] A. Ahmed, “Architecture of densenet-121,” OpenGenus IQ: Computing
Expertise & Legacy, https://iq.opengenus.org/architecture-of-
densenet121/ (accessed Nov. 24, 2023).

[26] G. Singhal, “Gaurav Singhal,” Pluralsight,
https://www.pluralsight.com/guides/introduction-to-densenet-with-
tensorflow (accessed Nov. 20, 2023).

[27] V. Kurama, “A guide to resnet, inception V3, and squeezenet,”
Paperspace Blog, https://blog.paperspace.com/popular-deep-learning-
architectures-resnet-inceptionv3-squeezenet/ (accessed Nov. 24, 2023)

[28] Ramalingam, S., & Garzia, F. (2018). Facial expression recognition using
transfer learning. 2018 International Carnahan Conference on Security
Technology (ICCST). https://doi.org/10.1109/ccst.2018.8585504

[29] Randellini, E., Rigutini, L., & Saccà, C. (2021). Data Augmentation and
transfer learning approaches applied to facial expressions recognition.
NLP Techniques and Applications.
https://doi.org/10.5121/csit.2021.111912

[30] Darapaneni, N., Choubey, R., Salvi, P., Pathak, A., Suryavanshi, S., &
Paduri, A. R. (2020). Facial expression recognition and recommendations
using deep neural network with transfer learning. 2020 11th IEEE Annual

Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON).
https://doi.org/10.1109/uemcon51285.2020.9298082

[31] Ahmed, T. U., Hossain, S., Hossain, M. S., ul Islam, R., & Andersson, K.
(2019). Facial expression recognition using convolutional neural network
with data augmentation. 2019 Joint 8th International Conference on

Informatics, Electronics & Vision (ICIEV) and 2019 3rd

International Conference on Imaging, Vision & Pattern Recognition

(icIVPR). https://doi.org/10.1109/iciev.2019.8858529

[32] Hrga, I., & Ivasic-Kos, M. (2022). Effect of data augmentation methods
on face image classification results. Proceedings of the 11th International

Conference on Pattern Recognition Applications and Methods.
https://doi.org/10.5220/0010883800003122

50

A Comprehensive Review of Methods Used for

Health Prediction and Monitoring Utilizing an

Electronic Medical Records (EMR) System

SP Jayasekera#, LP Kalansooriya
Department of Computer Science, Faculty of Computing Sir John Kotelawala Defence University, Sri Lanka

Corresponding author: SP Jayasekera, Email: 37-cs-0009@kdu.ac.lk

ABSTRACT: In the rapidly evolving field of healthcare, Artificial Intelligence (AI) and pattern recognition play a key
role in enhancing disease diagnosis and prediction. As the patient population increases, the digitalization of medical records
has become essential, therefore electronic medical records were developed. This stored Electronic Medical Records (EMR)
data can be used to predict possible diseases based on the symptoms stored in the system. This study delves into the
integration of AI methodologies within EMR systems, providing a comprehensive review of current techniques that have
been used in health prediction and monitoring using EMR data. In this paper, different AI-driven approaches were
examined and compared, including Deep Learning (DL), Machine Learning (ML), and Rule-Based Methods. This paper
reveals the potential of these techniques in accurately diagnosing diseases, additionally, it discusses challenges and future
directions, emphasizing the need for innovative solutions to optimize EMR systems in the context of AI and pattern
recognition. Several instances where AI models, such as the application of Support Vector Machine (SVM) models,
achieved predictive accuracies of 86.2% and 97.33% in different cancer types, and ML models diagnosing Diabetic
Retinopathy with a 92% accuracy rate were observed. Variations in the effectiveness of these technologies across different
diseases were also observed, such that a technique that has high accuracy in one disease may have lower accuracy in a
different disease. This paper aims to contribute to the growing body of knowledge in AI applications in healthcare, offering
insights into the development of more efficient, accurate, and predictive healthcare models.

KEYWORDS: Healthcare, Deep learning, Electronic Medical Records, Rule-based method, Disease
diagnosis, Machine learning.

I. INTRODUCTION

One of the most critical responsibilities of medical institutions
is managing patient data, and a patient file is an essential source
of data since it enables the development of comprehensive
healthcare strategies. It had been common practice for a long
time to keep records on paper where medical offices, hospitals,
and clinics frequently gathered files and kept patient history
using a paper record system. However, paper medical records
have a lot of drawbacks such as insufficient storage space,
insufficient backups, inconsistency in the layout, and unclear
audit trails. Due to technological advancements, electronic
medical records were introduced to store patient data on
computers or smart devices and overcome paper records’
drawbacks.

Electronic Medical Records (EMR) are digitalized versions of
paper charts in clinics and hospitals. Clinicians and doctors
primarily use these EMRs to diagnose and treat patients and
record information by and for the physicians in the hospital.
The use of EMRs has become increasingly prevalent in

healthcare, with potential benefits such as improved patient
care and reduced medical errors [5]. It contains a patient's
medical history, diagnoses, prescriptions, treatment schedules,
vaccination dates, and lab and test results. These are stored in
databases that enable doctors or clinicians to access patient
information quickly, track vaccinations, follow patient health
performance, and make informed judgments with proper
understanding and confidence for the most complex multi-axial
diseases, heart diseases, and cancers [4].

By computerizing patient information, there is also a
significant change in how patient data are arranged and made
available for applications that weren't previously possible with
paper records. Thus, it shows that the main objective of an
EMR is keeping an eye on the patient while improving
healthcare quality. It is important to understand the patient's
unique perspective and experiences in the diagnosis and
treatment of disease, using EMR has been shown to improve
patient outcomes and satisfaction, as well as enhance the
physician-patient relationship [2]. Even though EMR provides

51

users and physicians with several advantages, several
difficulties are connected to their implementation, such as
computer downtime, computer professionals' limitations, a lack
of user communication, security risks of confidentiality-
leakage, etc which should be considered [6]. An accurate and
timely diagnosis is the foundation of any successful treatment.
Access to longitudinal data from a patient's EMR might be a
valuable clinical resource that could be utilized to forecast
future events or diagnoses [1]. A patient's status is thoroughly
described in an EMR, and applying data-driven technologies to
an EMR enables us to accurately predict and diagnose diseases.
This can be made possible by making the raw EMR data into a
machine learning representation or turning the data into
relevant data that can be processed algorithmically. The
integration of AI technologies with EMR systems represents a
groundbreaking development in this context. AI's ability to
process large datasets and uncover patterns offers unparalleled
opportunities for improving disease diagnosis, treatment
planning, and patient monitoring.

There are different types of data-driven techniques used to
accomplish prediction and diagnosis systems that medical
professionals can employ to effectively forecast illnesses and
enhance the health of their patients. This review aims to find
the most accurate methods for diagnosing and predicting
diseases by describing and comparing various methods and
techniques used for health prediction and monitoring using
EMR.

This study discusses numerous disease diagnosis and
prediction methods using electronic records, highlighting their
benefits and drawbacks. It also discusses current trends and
potential future developments and makes a comparative
comparison of the various methods.

The literature review of this paper explores the significance of
EMR data in monitoring patient health and advancing data-
driven decision-making. It delves into the growing interest in
employing computer-assisted methods for disease diagnostics
based on Electronic Health Record (HER) data, categorizing
these methods into distinct approaches. Machine Learning
(ML) methods, encompassing Bayesian, Support Vector
Machine (SVM), and decision tree techniques, are discussed,
along with the challenges of integrating raw EHR data into ML
models due to complexity and limited healthcare data.
Bayesian Networks are highlighted for their use in probabilistic
medical ontology reasoning, aiding in disease diagnosis and
prediction. Decision Trees are emphasized for their
effectiveness in the early identification of diseases like Diabetic
Retinopathy and asthma. Additionally, rule-based heuristic
techniques are explored for diagnosing colorectal cancer and
lupus. Finally, Deep Learning methods, including
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Deep Belief Networks (DBN), and
Autoencoders (AE). Using these findings, it is aimed to present

a comprehensive overview of the existing predicting systems
implemented using the above-mentioned techniques and EMR
data.

The paper is structured into five sections. Section 2 discusses
the current research on methods for disease diagnosis. Section
3 is the Methodology. Section 4 contains the discussion.
Finally, Section 5 presents the conclusion of the review.

II. DISEASE DIAGNOSIS USING DATA-DRIVEN
MODELS

EMR data is a critical resource in modern healthcare,
providing a dynamic method to monitor patient health and
improve decision-making using data-driven solutions. Unlike
traditional clinical tests and biological investigations, the
fundamental goal of EMR data is to track a patient's health over
time in a methodical manner. This large set of patient data has
paved the way for the creation of prediction models by
implementing AI models such as Machine Learning (ML),
Deep Learning (DL), and Rule-Based Methods, which have
revolutionized disease prediction and diagnosis processes.

This paper discusses various electronic medical record-
based methods for diagnosing diseases automatically.
Depending on their technique, models have been grouped into
different approaches to diagnosing diseases using EMR data.

A. Machine Learning (ML) Methods

Health database systems based on electronic medical records
(EMR) are most often created using machine learning methods
for individuals who have had health examinations [7]. Machine
learning methods can be categorized into different approaches,
including Bayesian, SVM, and decision tree methods. Each of
these approaches represents a distinct category within the field
of machine learning [34].

Many research studies have used EHR data for a predictive
model, which involves constructing a statistical model to
predict a clinical outcome using machine learning. However, it
is difficult to directly integrate raw EHR data into ML models

Figure 01. Breakdown of the techniques used in this review to
diagnose diseases.

52

for predictive models due to the complexity of EHR data [8].
Because a lack of data prevents machine learning from solving
many healthcare issues.

1) Support Vector Machine (SVM)

For supervised classification, experts often use Support Vector
Machines (SVM). SVM is based on labeled data, and Vapnik
invented SVM [45]. A training dataset is used to find data from
the input that has a structure like the output data when both the
input and the output have already been supplied.

Getting a cancer diagnosis is crucial for prospective patients
since early tumour identification and therapy can improve
survival. In [9], a cancer diagnosis was performed using the
SVM model using medical information retrieved straight from
the EHR. As part of the proposed approach, SVM models for
cancer classification were trained using medical records
extracted from Electronic Health Records (EHRs). These SVM
models Based on the medical data that was analysed, played a
crucial part in the cancer categorization procedure. After being
trained on 400 pieces of data for each cancer and employing
100 pieces of health information for each cancer, the algorithm
has shown a predictive accuracy of 86.2% for ten different
forms of cancer and 97.33% for three different types of cancer.

An SVM-based technique was used [10] for significant cohort
research to diagnose contralateral breast cancer. Characteristics
based on pathology reports for every area of breast cancer and
narrative text in progress notes were used to derive features,
Zeng et al. [10] designed and put into practice a novel
methodology. The suggested strategy for identifying
contralateral occurrences in the notes uses medical ideas and
how they are combined. SVM and derived characteristics are
used to detect contralateral cancers. During the validation
process, the area under the curve (AUC) for the model was
determined to be 0.93, indicating its high accuracy in predicting
outcomes. In the test set, the AUC was slightly lower at 0.89,
indicating a slightly reduced but still reliable performance. This
strategy of feature development is advantageous due to its
simplicity and can be applied to different occurrences of breast
cancer as well as to identify various other diseases.

To identify Rheumatoid Arthritis (RA) patients, the Support
Vector Machine (SVM) technique can be employed. This
technique utilizes a set of naïve and expert-defined Electronic
Health Record (EHR) characteristics for the identification
process [12]. This method uses Natural language processing
(NLP) concepts, pharmaceutical exposures, and billing codes.
The SVM methodology was trained using both expert-defined
and naive data. The accuracy and recall scores were 0.94 and
0.87, respectively, as opposed to 0.75 and 0.51 for deterministic
approaches. In this study, a dataset of 10,000 patients was
employed. The test findings divided the patients into three
groups: potential RA, definite RA, and not RA.

2) Bayesian Network (BN)

A probabilistic graphical framework called a Bayesian network
is utilized to represent a group of variables and their conditional

interactions. This graphical model employs a directed acyclic
graph (DAG) to illustrate the relationships among the variables
and their dependencies. Naive Bayes (NB) and Bayesian
Networks (BN) are both probabilistic algorithms that perform
effectively with various characteristics [14].

Building Clinical Bayesian Networks (CBN) for probabilistic
medical ontologies reasoning is described in [13] to directly
learn the entire ontology and high-quality Bayesian topology
from EMRs. More than 10,000 patient records analysed for
medical entity connections have used the K2 greedy method
and Odds Ratio (OR value) computation to create a Bayesian
topology automatically. The study demonstrates that medical
information can generate high-quality health topology and
ontology directly and automatically. A clinical Bayesian
network has been developed using the study's probability
distribution between illness and other parameters. With 1712
test samples, an accuracy of 64.83% was produced by the Naïve
Bayesian network, while the Basic Bayesian network produced
68.45%.

In a study by Sakai et al. [15], they evaluated the diagnostic
performance of a Bayesian network in comparison to the NB
model, an artificial neural network (ANN), and a logistic
regression model to identify instances of appendicitis. 169
people who were thought to have acute appendicitis were
included in the dataset for the study. The performance of the
proposed model was assessed using logistic regression and
neural network metrics. Compared to other diagnostic models
examined in this research, this model had the lowest error rate
and produced the most trustworthy findings, detecting that
50.9% of patients (86 out of 169) had appendicitis.

The Naïve Bayes method was employed in Al-Aidaroos et al.
[16] review of medical data mining to classify medical data and
diagnoses such as primary tumours, hepatic issues, and breast
or lung cancer. Using 15 datasets, the proposed NB strategy
was empirically compared with five other approaches to show
its superiority. The findings indicated that NB performed better
than others regarding medical categorization. Deep learning
ideas can produce superior segmentation results with the
proposed approach. The report states that future research will
combine NB and different methodologies.

Kazmierska and Malicki researched the Bayesian classifier,
which is used to assess whether cancer is progressing or
relapsing [17]. This study analysed data from 142 individuals
who had radiation therapy for brain tumours between 2000 and
2005. For training, 96 binary attributes were selected. As a
result of the proposed model, the likelihood of having a cancer
relapse has been determined as well as the likelihood of not
having one. The proposed method received scores of 0.84, 0.87,
and 0.80 for accuracy, specificity, and sensitivity, respectively.

3) Decision Tree

EHR data can accelerate and simplify the early identification
of Diabetic Retinopathy (DR). Five machine-learning
techniques are used in [18] to identify diabetic retinopathy

53

using electronic health record data. Records from 301 Chinese
hospitals were compiled into a sizable retinal dataset. To
increase the accuracy of DR illness diagnosis, preprocessing
techniques such as label binarization, value normalization, and
standard acceleration are carried out. According to the
experimental findings, the machine learning model's Random
Forest (RF) can achieve an accuracy level of 92% while
performing well. Due to its low cost, low threshold, and
excellent diagnosis accuracy, the suggested approach has an
advantage over current DR diagnostic methods.

The primary objective of the study conducted by Lungu et al.
[19] was to investigate whether machine learning techniques
could enhance the diagnostic precision of Magnetic Resonance
Imaging (MRI) in detecting pulmonary hypertension (PH).
This was accomplished by employing computational modelling
approaches and image-based metrics. MRI as well as the Right
Heart Catheterization (RHC) were used to identify PH using a
decision tree method [19]. Seventy-two individuals with
potential PH underwent MRI and RHC, and 57 of these patients
were found to have the condition, while 15 samples were
determined to be PH-free. As a result of the proposed
algorithm, 92% of the PH cases were correctly identified, while
4% were misclassified. If the findings of this study are as
anticipated, RHC may not be required when PH is suspected.

In [20], the decision tree is used in the first phase to diagnose
asthma, and the fuzzy system is utilized in the second phase to
assess the level of asthma management. Dry cough, sore throat,
sneezing, and other symptoms have been used to diagnose
asthma, whereas breathlessness and other daytime symptoms
have been used to measure the control level. In this study, the
information was gathered through the patients' responses to
questionnaires. Diagnoses of asthmatic patients were made
using a decision tree classifier, which had accuracy and kappa
coefficients of 0.90 and 0.783, respectively.

B. Rule-Based Method

In [22], the diagnosis of colorectal cancer was made using a
rule-based heuristic technique. Machine learning and rule-
based methods' effectiveness was evaluated for each phase. The
algorithm identified concepts at the document level with an F-
measure of 0.996 as well as detected cases at the patient level
with 0.93 for the F-measure using the manually examined data
set of 300 potential Colorectal cancer patients. In the work by
Breischneider et al. [23], in this study, rule-based grammar was
used to obtain textual information from records of patients with
mamma carcinoma. Based on recovered textual fragments,
seven essential criteria were listed to construct the therapeutic
suggestion. The mammography use case was used to assess the
proposed system. With an accuracy of 0.69, a textual feature
extraction approach based on rule-based decision support,
information extraction, and semantic modelling was employed
to determine the lymph node status.

In an EHR dataset with 400 records, Jorge et al. [24] used rule-
based approaches to identify lupus patients. Natural language
processing was used to extract the narrative and codified data

from the training set of data (NLP). Based on penalized logistic
regression, the author classified systemic lupus erythematosus
(SLE) as either definite or probable. The machine learning code
utilized in this work for definite SLE showed a 90% positive
predictive value, with a specificity of 97%. According to the
best rule-based method (ICD-9 code), the specificity and
sensitivity were respectively 86% and 84 % and 60 % and 69 %
for definite and definite/probable SLE.

C. Deep Learning Methods

Deep neural networks, including autoencoders (AE),
Convolutional Neural Networks (CNN), Deep Belief Networks
(DBN), Recurrent Neural Networks (RNN), and other similar
architectures, are considered the most effective machine
learning techniques in the biomedical sector [25]. These
networks form the foundation of deep learning and have shown
remarkable effectiveness in various biomedical applications.
Various deep learning methods used on electronic medical
records are examined in this review to apply them to clinical
tasks. Their benefits are discussed in practice and potential
future applications.

1) Convolutional Neural Network (CNN)

A method for unsupervised deep feature learning that Miotto et
al. introduced in [21]. Using clinical notes as the input, they
drove patient representation in their predictive modelling
technique. By identifying hierarchical regularities and
relationships in clinical notes, 700,000 individuals from the
Mount Sinai dataset were used. The study encompassed a broad
range of clinical areas and chronological periods, involving a
total of 76,214 test individuals, representing 78 distinct
diseases. The study's findings surpassed approaches that relied
on a representation derived from basic medical information,
where accurate and F-score forecasts improved by 92.9% and
18.1%, respectively. When produced patient representations
are included in DL approaches, clinical prediction can be
improved. This study can use the laboratory findings to
improve the quality of its model.

Multiple illnesses have been evaluated using the disease
prediction model built on EMRs [26]. The Convolutional
Neural Network (CNN) has been used to characterize the
suggested strategy for multiple illness prediction. This
approach was tested on 4298 patients with a brain infection,
coronary heart disease, and pulmonary infection. In a dataset
for cerebral infections, the CNN algorithm, the accuracy was
96.5% and the F1-measure score was 96.6%.

2) Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNN) were specifically designed
to process sequential inputs, such as language data. The present
state of an RNN implicitly incorporates knowledge about the
whole history of the series since RNNs process, a series of
inputs that transmits the concealed value of every input unit to
the next input unit, one item at a time. Doctor AI [27], which
was over eight years, performed over 260K time-stamped
analyses on individuals' electronic health records
longitudinally, which is one RNN-inspiring technique. Doctor

54

AI surpassed multiple baselines and scored 79.58% on a sizable
real-world EHR dataset.

Wu et al. [28] presented a novel approach for categorizing
paediatric asthma by utilizing event sequences and their
corresponding characteristics. The findings of this study show
that including a timestamp in an RNN model enhances the
categorization of individuals without asthma rather than those
who have it.

3) Deep Belief Network (DBN)

A Deep Belief Network (DBN) has been used to diagnose
Parkinson's disease (PD) using speech sounds collected from
the UCI repository [30]. A range of healthy and sick voices was
used to train the suggested approach, using DBN as a data
source, and the features were extracted. According to the
proposed method, the PD consists of one output layer and two
stacked limited Boltzmann machines. Parkinson's disease was
diagnosed with 94% accuracy using the recommended
approach.

DBN has been used [31] to diagnose attention deficit
hyperactivity disorder (ADHD), which is one of the most
common diseases. The network was built and trained using a
greedy methodology according to the recommended strategy.
The Global Competitions ADHD-200 has provided the two
training and testing datasets. This study has used samples from
the Neuroimaging (NI) and New York University (NYU)
databases for training and testing, respectively. These findings
show that they attain cutting-edge accuracy of 0.6368 on the
NYU dataset and 0.6983 on the NI dataset.

4) Auto Encoders (AE)

In a study, researchers employed auto-encoders to forecast a
particular group of diagnoses [29]. For the detection and
classification of softmax, stacked autoencoder, and cervical
cancer classification algorithms have been utilized [32]. To
train and test the approach, the UCI dataset with 30
characteristics, four targets, and 668 samples was used. A
training set made up 70% of the dataset, while a test set made
up 30%. Four target variables were applied to the suggested
model, and the efficacy of its categorization was evaluated.
This comparison produced a 0.978 accurate classification rate.
Due to the dimensionality reduction of the samples, this
model's training takes far too much time. In the future,
advanced methods could be used to reduce the training time of
the model. Hwang et al. [33] examined the efficacy of missing
value prediction, conventional networks, and generative
adversarial networks (GANs) methods combined for illness
prediction [33]. With a specificity of 0.99, along with a
sensitivity of 0.95, also with an accuracy of 0.98, the stacked
autoencoder (missing value forecasting technique) and
auxiliary classifier GANs (AC-GANs: illness prediction) have
shown excellent results. In this work, AE fills in the gaps left
by the GAN generic model. The use of GAN to fill in the
missing data is one of this work's future directions.

III. METHODOLOGY

An efficient and effective way to obtain requirements is
through document analysis, which involves reviewing current
system documentation and acquiring data. In the study, a
systematic analysis of 40 papers was conducted, and 31 of them
were selected based on stringent criteria to review in this paper.
Research articles were used from Google Scholar and other
research archives articles on EMR-based disease diagnosis
based on AI methods such as ML, Rule-based, and DL
methods. The selection process involved multiple stages,
including title and abstract screening, full-text reviews, and a
backward and forward search to capture additional relevant
works. Selected literature used specific keywords and phrases,
and combinations of these terms. Keywords related to the topic
were searched to find existing research articles.

Several research articles on EMR systems and methods used
for predicting systems were reviewed and analyzed. The
research article categorizes the methods used to track and
predict health into three categories: Different approaches were
employed in the study, including the utilization of Rule-Based
Methods, Machine Learning (ML) Methods, and Deep
Learning (DL) Methods. These categories were chosen based
on the predominant analytical techniques used in the articles
and provided a structured way to compare the effectiveness and
accuracy of different methods.

To simplify data analysis, the literature review was
summarized into tables. Tables provide an overview of
methods used, the disease addressed in the paper, performance
measures such as accuracy and F-measures (a measure of test
accuracy), and the paper's objectives. Comparing the
effectiveness and accuracy of different methods can be done
using the tables.

Support Vector Machines (SVMs) are strong technology that
includes both nonlinear and linear regression approaches,
making them essential to data mining processes. SVMs can
conduct multiclass and binary classification, making them
useful for data prediction and classification, including in the
field of health research. SVMs are frequently used by
researchers for supervised classification, particularly in disease
detection and prediction.

For instance, SVM methods have been used to identify
different types of diseases, such as breast cancer and
rheumatoid arthritis, with high accuracy. Zhang et al. [9]
achieved 97.33% accuracy in cancer classification from
Electronic Health Records (EHRs) using SVM, while Zeng et
al. [10] conducted a validation study on detecting contralateral
breast cancer, achieving a high area under the ROC curve
(AUC) of 93% when utilizing extracted features in combination
with pathology reports. Additionally, SVMs have been
employed in the identification of rheumatoid arthritis (RA)
phenotypes, achieving an F-Measure score of 88.6% in a Naïve
EHR with a sample size of 376 patients [12].

55

Table 6. The Summary of the SVM Methods

Methods Focused

disease

Performance

Measures

Dataset Objective

SVM- RBF

[9]

Cancer

Accuracy- 97.33%

Employed 100 pieces of health
information for each cancer and trained
on 400 pieces of data for each cancer.

Using SVMs to classify cancer from
EHRs.

SVM [10]

Breast Cancer

Testing- 89%

AUC
 Validatio
n- 93%

A total of 1063 women with breast
cancer.

Analyzing pathology reports and
extracted features to identify
contralateral 1 breast cancer.

SVM

Rheumatoid
Arthritis

Precision- 96.8%

In total, 376 patients (185 with RA and
191, not RA).

SVM-based phenotyping of RA in the
Naïve EHR.

[12] F-Measure- 88.6%

 Recall- 87%

 AUC-96.6%

The below graph shows the average performance based on the
performance measure obtained for the different diseases based
on the SVM methods used.

Figure 02. Comparison of the SVM Method's average performance

on different diseases

Bayesian approaches, such as Naive Bayes (NB) and Bayesian
Networks (BN), are probabilistic algorithms that use multiple
features elegantly. By utilizing proven biomarker operating
characteristics, Bayesian clustering can accommodate patients
with varied data availability. The advantage of Bayesian joint
modeling is that it incorporates phenotypic uncertainty into
future association analyses, producing correct uncertainty
estimates. When compared to Bayesian networks, NB
classifiers do not require dependency networks and are better
at handling high-dimensional features. This research looks at

four articles that utilize Bayesian approaches to predict diseases
like cancer, appendicitis, hepatitis, and brain tumors.

Shen et al. [13] tested the accuracy of Naive Bayes and
Bayesian Networks in predicting cancer and achieved 64.83%
and 64.83% accuracy, respectively. Sakai et al. [15] used the
Bayesian network to predict the diagnosis of acute appendicitis.
Aidaroos et al. [16] classified cancer, hepatitis, and

liver disorders using NB with an accuracy of 97.43%. Bayesian
networks were also used to optimize treatment decisions for a
brain tumor with 84% accuracy. The table below lists a few
Bayesian method-based systems, and research articles are used
to note how accurate the results were when used to predict
diseases.

Bayesian statistical models have been utilized when there are
gaps in the information provided by local data but there are
additional sources of information that can help close the gaps.
There are further advantages to Bayesian modeling since it
gives a reasonable framework for incorporating new data as it
becomes available and helps practitioners to rapidly estimate
future illness scenarios. The table below lists a few Bayesian
method-based systems, and research articles are used to note
how accurate the results were when using Bayesian method-
based to predict diseases.

56

Table 7. The Summary of the Bayesian Methods

Methods

Focused Disease(s)

Performance Measures

Dataset

Objective

NB, BN [13]

cancer

NB Accuracy- 64.83%

BN Accuracy- 68.45%

Records of 10,000 identified
patients.

An Automatic Bayesian
topology generation using the
K2 greedy method and odds
ratios (OR values).

Bayesian
Network

[15]

Appendicitis

-

A database contains 169
people who may have acute
appendicitis.

An algorithm for predicting
acute appendicitis using
Bayesian networks.

NB, LR,
DT, and NN

 [16]

Multiple diseases,
including cancer,
hepatitis, and liver
disorders

Accuracy- 97.43%

AUC- 99%

Various illnesses are
illustrated in 15 datasets from
the UCI library.

LR, NB, NN, and DT
classification of medical data.

Bayesian
Network

 [17]

Brain Tumor

The accuracy rate is 84%
The sensitivity is 80% The
specificity is 87%

142 patients with brain
tumors.

Optimization of treatment
decisions using the Naïve
Bayesian Classifier.

The graph illustrates the average performance of different
diseases based on the use of Bayesian methods for diagnosis.

Figure 03. Comparison of the Bayesian Method's average

performance on different diseases

Using decision trees was another method used for predicting
diseases in research articles. A decision tree aids in creating a
fair picture of the rewards and hazards related to each potential
result. When contemplating EHRs, where uncertainty is
prevalent, decision trees are highly helpful because they are
especially beneficial when the results are unknown. A decision
tree is an effective tool for decision-making. It offers a useful

framework within which to consider options and investigate
what might result from each.

Decision trees are used to categorize records, which are useful
for challenges involving association and regression. By using a
decision tree, advantages and disadvantages can be quickly
visualized and identified. The diagnosis system for diabetic
retinopathy developed by Sun and Zhang [18] achieved 86.82%
accuracy. Based on MRI images, Lung et al. [19] were able to
diagnose pulmonary hypertension with 92% accuracy using a
decision tree. Using a decision tree and fuzzy system, asthma
diagnosis and control levels were
determined [20].

The reliability and effectiveness of decision trees in medical
decision-making are supported by reputable sources, including
research articles and academic publications. Decision trees
provide high classification accuracy and are a dependable and
effective means of making judgments due to their plain
representation of the information gathered. They have been
widely used in a variety of medical decision-making scenarios,
including classification and diagnosis. The fundamental
properties of decision trees and their effective applications in
medicine have been emphasized in the literature, highlighting
their potential for future use in medical research and practice.

57

Table 8. The Summary of the Decision Tree Methods

Methods

Focused

Disease(s)

Performance

Measures

Dataset

Objective

Decision Tree [18]

Diabetic
Retinopathy

Accuracy- 86.6%

301 Chinese hospitals
provided 5057 records.

Five machine learning
techniques are used with the
EHR to diagnose DR.

Decision Tree [19]

Pulmonary
hypertension

Sensitivity is 97%

Accuracy of 92%

Specificity- 73%

Pulmonary
 hypertension
 is suspected in 72
patients.

Analyzing MRI images to
diagnose pulmonary
hypertension.

Decision Tree and
Fuzzy system

[20]

Asthma

Kappa- 78.32%

Accuracy- 90%

30 of patients with asthma.

Using fuzzy logic and decision
trees to diagnose and control
asthma.

The graph below presents the average performance of various
diseases using Decision tree methods for diagnosis.

By using rule-based systems, we can retrieve features from
electronic medical records quickly. For the extraction of data,
rule-based systems are used since the most common kind of
knowledge representation is if-then logic.

Using rule-based systems, domain experts can express and rate
their expertise. The decision-making process can then use that
data. To determine the outcomes of rule-based or identically
based systems, users must input specific attributes or facts,
such as patient symptoms. It is difficult for someone without
medical training to do this. A drawback of this method is the

requirement for precise definitions of data properties. Using the
rule-based method, computer scientists identify rules and
identify patterns associated with them. Xu et al. [22] used this
method to identify colorectal cancer. Breischneider et al. [23]
used automated breast cancer detection using rule-based
grammar and achieved 90% accuracy. Using a rule-based
algorithm and machine learning codified algorithm, Jorge et al.
[24] identified Lupus patients from EMR.

Figure 04.Comparison of the Decision Tree Method's average
performance on different diseases

58

Table 9. The Summary of the Rule-based Methods

Methods

Focused

Disease(s)

Performance

Measures

Dataset

Objective

Rule-based ML-based

[22]

Colorectal
cancer

Accuracy- 99.6%
Precision- 99.6%
Specificity-
96.9%
F-measure-
99.6%

1,262,671 patients
from a synthetic
derivative database.

Data extraction and
integration from
EHRs for Colorectal
cancer detection

Rule-based grammar
approach

[23]

Breast cancer

Accuracy of 90%
The Specificity
of 59%
Sensitivity of
98%

The university
hospital in Erlangen
collected the clinical
reports of 2096
patients totaling
8766.

Clinical report
 information
extraction for breast
cancer.

The rule-based
algorithm is, Machine
learning codified
algorithm.

[24]

Definite SLE

Definite
probable SLE

Sensitivity- 86%
Specificity- 60%
PPV- 46%
Sensitivity- 84%
Specificity- 69%
PPV 65%

400 records in an
EHR dataset.

From the
EHR, recognize
patients with Lupus.

The graph illustrates the performance of rule-based methods
applied to the diagnosis of various diseases.

Deep Learning (DL), often referred to as hierarchical learning,
is a sophisticated modeling approach characterized by its use of
multiple processing layers to analyze complex data sets. This
method is increasingly employed in the analysis of the ever-
expanding volumes of EHRs. The application of deep learning
in the realm of EHRs is particularly notable in research
endeavors focused on forecasting individual health outcomes
and assessing potential risks. At the heart of deep learning
technology are various types of neural networks, each with
unique capabilities and applications. These include
convolutional neural networks (CNNs), known for their
prowess in processing visual imagery; recurrent neural
networks (RNNs), which excel in handling sequential data;
deep belief networks (DBNs), which are effective in
probability-based learning; and autoencoders, specialized in
data encoding and reconstruction tasks. These diverse neural
network architectures enable deep learning to effectively
interpret and utilize the vast and complex data present in EHRs
for advanced medical research and analysis.

Figure 05. Comparison of the Decision Tree Method's
average performance on different diseases

59

Methods

Focused

Disease(s)

Performance

Measures

Dataset

Objectives

Unsupervi
sed deep
feature
learning

[21]

78 diseases

Accuracy- 92.9%

F-score- 18.1%

The Data warehouse from
Mount Sinai contains
700,00 patients.

Predictive models can be
developed using patient
representations from EHRs.

CNN and
Framingha
m risk
score

[26]

Cerebral
infraction (CI),
Pulmonary
Infarction (PI),

And Coronary
Heart (CH)

Accuracy CI-96.5%

PI- 95.6%

CH- 93.6%

From a Chinese hospital
with a grade-A rating,
4298 individuals were
evaluated.

Clinical notes based on a
uniform model for assessing
multiple diseases.

RNN [27]

Numerous
diseases

Recall- 79.58%

260K patients.

Applied to longitudinally
timestamped EHRs.

RNN [28]

Pediatric
Asthma

Precision- 84.54%

F-measure- 85.08%

Recall- 85.65%

4000 patients from
Physionet and 4013
patients from Olmsted
Country Birth Cohort.

RNN-based asthma
classification in pediatrics.

DBN [30]

Parkinson’s
Disease

Accuracy- 94%

Data set on 31
Parkinson’s patients.

DBN-based Parkinson's
 disease
diagnosis system.

DBN
 wi
th greedy
Approach

[31]

ADHD

NI- 69.83%

Accuracy- NYU-
63.68%

Neuroimaging-samples
of 73

New York University-
samples of 263.

A greedy approach to the
diagnosis of ADHD using
DBN.

Stacked
AE and
Softmax
classificati
on.
[32]

Cervical cancer

Accuracy- 97.25%

668 samples from the
UCI dataset.

Stack autoencoder and
softmax classification for
cervical cancer classification
and diagnosis.

Stacked
AE and
GAN

[33]

Breast cancer

Sensitivity- 95.28%
Accuracy- 98.05%
Specificity- 99.47%

Breast cancer records are
available for 569 cases, of
which 212 are malignant
and 357 are benign.

Generative Adversarial
Networks (GAN) and stacked
autoencoders for disease
prediction from EHRs.

Table 5. The Summary of the Deep Learning Methods

60

IV. DISCUSSION

This paper provides a comprehensive review of current
techniques that have been used in health prediction and
monitoring using EMR data, with a focus on the integration
of AI methodologies within EMR systems. The study
highlights the potential of AI-driven approaches, including
Deep Learning (DL), Machine Learning (ML), and Rule-
Based Methods, in accurately diagnosing diseases. The paper
discusses several instances where AI models have achieved
predictive accuracies using the models in existing systems.
According to the literature review of this paper, a few of the
strengths and weaknesses were identified in each of these AI-
driven approaches.
Because of their adaptability and capacity for probabilistic
reasoning, machine learning techniques like support vector
machines (SVM), Bayesian methods, and decision trees have
been useful in the diagnosis of conditions like cancer,
arthritis, and pulmonary hypertension. These techniques have
also shown high predictive accuracies in a number of different
disease types. SVMs are a powerful technology that are
essential to data mining procedures since they support both
linear and nonlinear regression techniques. SVMs are helpful
for data prediction and classification, especially in the area of
health research, because they can do binary and multiclass
classification. SVMs do have significant drawbacks, too, such
as the computationally demanding nature of model training
and optimization. In contrast to more straightforward models
like decision trees, they are also harder to interpret, which can
be problematic in medical contexts when clarification is
crucial. The Bayesian Network is another type of machine
learning technology that has pros and limitations. Bayesian
networks are helpful in controlling uncertainty and
probabilistic reasoning in the setting of medical diagnostics,
where ambiguity is common. They improve model
predictions by combining prior information and experience.
However, high-dimensional data is an issue for BNs, and as
the number of variables increases, so does the model's
complexity, making computation and interpretation
challenging. Decision trees are machine learning techniques
that give unambiguous decision paths and are highly
interpretable. As a result, they can be used to justify
diagnostic judgments in the healthcare industry. They perform
effectively with numerical and categorical data, can adapt to
various types of medical data, and can detect diseases early.
However, decision trees are prone to overfitting, especially
with complex or noisy data, and are limited in handling non-
linear relationships compared to more sophisticated models
like SVMs or deep learning techniques.
Rule-based approaches, which are noted for their speedy
feature retrieval and simple knowledge representation, have
exhibited excellent accuracy in specific disease diagnoses,
such as colorectal cancer with an accuracy of 99.6% [22] and
breast cancer with an accuracy of 90% [23]. However, they
have some disadvantages, such as reliance on precise
definitions, restricted flexibility and scalability, poorer
accuracy in some circumstances, and difficulty understanding
and implementing for non-experts. While rule-based systems
have demonstrated excellent accuracy in certain areas and are
praised for their simple logic, their rigidity and the
requirement for precise data definitions can be significant
limits, particularly in the dynamic and complicated field of

healthcare.
Deep learning (DL) has demonstrated remarkable capabilities
in biological applications. Because of its various processing
levels, it is extremely successful at processing complex data,
such as electronic medical records (EMR). DL approaches
have shown great accuracy and sensitivity in a variety of
medical activities, such as breast cancer detection, with an
accuracy of 98.05% [33], although DL has certain limitations.
Large datasets are often required for training, which can be a
drawback in cases when data is sparse. Furthermore, training
and implementing DL models can be computationally
demanding, necessitating significant processing power and
resources. Furthermore, DL models, particularly
sophisticated structures, can lack interpretability, making it
difficult to grasp the reasoning behind diagnoses or treatment
decisions, which is critical in healthcare.
This review discusses different techniques for predicting
cancer diseases, including SVM, Bayesian networks, rule-
based methods, and stacked AE. Using SVM, Zhang et al. [9]
classified cancer and achieved an accuracy of 97.33 %, while
Zeng et al. [10] identified breast cancer with an accuracy of
93%. Using a Bayesian network, a similar cancer disease
could be identified with 64.83% accuracy, while the same
disease could be identified using Naive Bayes with 64.83%
accuracy. Rule-based grammar was used to detect colorectal
cancer [22], which earned an accuracy of 99.6%. Breast
cancer was also detected using rule-based grammar [23],
which achieved an accuracy of 90%. By combining AE and
Softmax, Adem et al. of [32] classified cervical cancer with
97.25 percent accuracy. In this study, stacked AE and GAN
[33] were used to predict breast cancer, and the accuracy rate
was 98.05%.
To predict Asthma, different methods have been used. The
Decision Tree and Fuzzy system [20] were used to diagnose
and control asthma levels, and this system showed an
accuracy of 90%. Wu et al. [28] used the RNN method to
create a pediatric asthma prediction system with an accuracy
f- a measure of 85.08%.
Even though there are many predictive models available, most
of them are designed to predict single diseases without
considering the many factors that can affect patients, for
example, a cancer prediction system will only consider the
symptoms of a patient to predict cancer and will not suggest
other diseases based on these symptoms. However, several
models have been developed to help identify multiple
diseases, and this review discusses these systems. Al-Aidaroo
et al. [16] classified and detected multiple diseases, involving
hepatitis, cancer, and liver disorders, with an accuracy of
97.43%. With 86% and 84% sensitivity, [24] based on a rule-
based algorithm, definite and probable Systemic lupus
erythematosus (SLE) were detected. Shi et al [26] is another
researcher focused on multiple diseases Cerebral infarction
(CI), Pulmonary Infarction (PI), and Coronary Heart (CH)
detected in this system, accuracy reached for each disease was
CI 96.5%, PI 95.6%, CH 93.6%. Another system that is used
to detect multiple diseases [21] is used to derive 78 diseases
for this dataset taken from the Mount Sinai data warehouse of
7000 patients, this system received a 92.9% accuracy.
Data from the literature study indicates that certain
approaches are more effective than others. While certain
techniques may be more accurate for some illnesses but less
accurate for others.

61

V. CONCLUSION

According to this review, several EMR system studies have
been conducted recently to learn new facts about healthcare
using technology. Using various procedures, EMRs provide a
lasting record of patient care, reducing vulnerabilities and
solving problems in modernized healthcare records.
Physicians can provide better care to patients when they have
access to accurate and timely information. EMRs assist
physicians in providing safer care, reducing medical errors,
and improving the diagnosis of diseases. A competent EHR
not only keeps track of patient allergies and medications but
also checks for concerns when new medications are
administered. An EMR can identify patterns of potentially
related adverse outcomes and alert at-risk patients quickly.
With the advancement of IT, EMR systems are now widely
used to manage medical data and prescribe medication.
Different EMR systems using different techniques are
installed and used in various healthcare facilities and these
EMR systems have proven essential to delivering better
patient care. In this review, it is classified into three primary
categories machine learning, rule-based approach, and deep
learning method which are then further subdivided depending
on the suggested algorithm and have attempted to cover the
most recent and current studies on autonomous diagnosis
from electronic data. As discussed throughout the review,
some methods can give accurate results in one type of disease,
but not in another, and most systems are designed to predict
and diagnose one specific disease, but very few systems have
been able to detect multiple diseases simultaneously.
According to the literature study, certain approaches were
more effective than others.

Although EMR systems have their benefits, there are still
some drawbacks, such as the need to update patient records
after every appointment or consultation. Otherwise,
physicians or clinical supervisors may later check the system
and find incorrect information resulting in an inappropriate
treatment plan. It is also possible that records may not be
updated or inaccessible for an extended period if there is a
power outage, location problems, or another issue. Another
disadvantage is that they are still quite expensive.
Furthermore, future enhancements in EMR systems will
include the ability to extract vital information from laboratory
reports automatically. This integration of lab data with other
EMR data will enrich the datasets used for predictions,
leading to more accurate and comprehensive diagnostic
insights. By encompassing a broader range of clinical
information, including detailed lab results, these advanced
systems will significantly refine the precision of disease
prediction and patient treatment plans.

EHRs will be capable of handling massive amounts of data
and complicated clinical test results in the future and
eliminate current limitations and develop by using advanced
existing methods and techniques to predict diseases more
accurately. Related issues such as uncertainty in drawing
conclusions and privacy issues will be addressed, and EHRs
will come up with the genetic and behavioral data required for
accurate prescribing and patient care improvement.

REFERENCES

[1] J. Wu, J. Roy, and W. F. Stewart, “Prediction modeling using
EHR data: Challenges, strategies, and a comparison of machine
learning approaches,” Med. Care, vol. 48, no. 6, pp. S106–S113,
2010.

[2] S. Ford, “Patient-centered Medicine, Transforming the Clinical
Method,” Transforming the Clinical Method, vol. 7, pp. 181–182,
2004.

[3] M. A. Alkureishi, W. W. Lee, S. Webb, and V. Arora, “Integrating
patient-centered electronic health record communication training
into resident onboarding: Curriculum development and post-
implementation survey among house staff,” JMIR Med. Educ,
vol. 4, no. 1, 2018.

[4] J. Stausberg, D. Koch, J. Ingenerf, and M. Betzler, “‘Comparing
paperbased with electronic patient records: Lessons learned
during a study on diagnosis and procedure codes, ,’” J. Amer.
Med. Inform. Assoc, vol. 10, no. 5, pp. 470–477, 2003.

[5] G. Makoul, R. H. Curry, and P. C. Tang, “‘The use of electronic
medical records: Communication patterns in outpatient
encounters,” J. Amer. Med. Inform. Assoc, vol. 8, no. 6, pp. 610–
615, 2001.

[6] W. R. Hersh, “‘The electronic medical record: Promises and
problems,” J. Amer. Soc. for Inf. Sci, vol. 46, no. 10, pp. 772–
776, 1995.

[7] C.-S. Yu, Y.-J. Lin, C.-H. Lin, S.-Y. Lin, J. L. Wu, and S.-S.
Chang, “‘Development of an online health care assessment for
preventive medicine: A machine learning approach, ,’” J. Med.
Internet Res, vol. 22, no. 6, 2020.

[8] Y. Si, “Deep representation learning of patient data from
Electronic Health Records (EHR): A systematic review,” J.
Biomed. Inform, vol. 115, no. 103671, 2021.

[9] X. Zhang, J. Xiao, and F. Gu, “‘Applying support vector machine
to electronic health records for cancer classification,” in Proc.
Spring Simul. Conf. (SpringSim), 2019, pp. 1–9.

[10] Z. Zeng, “‘Contralateral breast cancer event detection using
nature language processing,” in Proc. AMIA Annu. Symp, 2017.

[11] M. Jamaluddin and A. D. Wibawa, “Patient diagnosis
classification based on electronic medical record using text
mining and support vector machine,” in 2021 International
Seminar on Application for Technology of Information and
Communication, pp. 243–248.

[12] R. J. Carroll, A. E. Eyler, and J. C. Denny, “Naïve
Electronic Health Record phenotype identification for
Rheumatoid arthritis,” AMIA Annu. Symp. Proc., vol. 2011,
2011.

[13] Y. Shen, “CBN: Constructing a clinical Bayesian network
based on data from the electronic medical record,” J. Biomed.
Inform, vol. 88, pp. 1–10, 2018.

[14] Q. T. Zeng, S. Goryachev, S. Weiss, M. Sordo, S. N.
Murphy, and R. Lazarus, “‘Extracting principal diagnosis, co-
morbidity and smoking status for asthma research: Evaluation of
a natural language processing system, ’’ BMC Med,” BMC Med.
Informat. Decis. Making, vol. 6, no. 1, 2006.

[15] S. Sakai, K. Kobayashi, J. Nakamura, S. Toyabe, and K.
Akazawa, “‘Accuracy in the diagnostic prediction of acute
appendicitis based on the Bayesian network model, ’’ Methods
Inf,” Methods Inf. Med, vol. 46, no. 06, pp. 723–726, 2007.

[16] K. M. Al-Aidaroo, A. A. Bakar, and Z. Othman, “Medical
data classification with naive Bayes approach,” Inf. Technol. J.,

62

vol. 11, no. 9, pp. 1166–1174, 2012.

[17] J. Kazmierska and J. Malicki, “‘Application of the Naïve
Bayesian Classifier to optimize treatment decisions,”
Radiotherapy Oncol, vol. 86, no. 2, pp. 211–216, 2008.

[18] Y. Sun and D. Zhang, “‘Diagnosis and analysis of diabetic
retinopathy based on electronic health records,” IEEE Access, vol.
7, pp. 86115–86120, 2019.

[19] A. Lungu, A. J. Swift, D. Capener, D. Kiely, R. Hose, and
J. M. Wild, “‘Diagnosis of pulmonary hypertension from
magnetic resonance imaging-based computational models and
decision tree analysis,” Pulmonary Circulat, vol. 6, no. 2, pp. 181–
190, 2016.

[20] A. Tyagi and P. Singh, “‘Asthma diagnosis and level of
control using decision tree and fuzzy system,” Int. J. Biomed. Eng.
Technol, vol. 16, no. 2, pp. 169–181, 2014.

[21] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “‘Deep
patient: An unsupervised representation to predict the future of
patients from the electronic health records, ,’” Sci. Rep, vol. 6, no.
1, 2016.

[22] H. Xu, “Extracting and integrating data from entire
electronic health records for detecting colorectal cancer cases,”
AMIA Annu. Symp. Proc, vol. 2011, pp. 1564–1572, 2011.

[23] C. Breischneider, S. Zillner, M. Hammon, P. Gass, and D.
Sonntag, “Automatic extraction of breast cancer information from
clinical reports,’’ in Proc,” IEEE 30th Int. Symp. Comput.-Based
Med. Syst. (CBMS), pp. 213–218, 2017.

[24] A. Jorge, “‘Identifying lupus patients in electronic health
records: Development and validation of machine learning
algorithms and application of rule-based algorithms,” Seminars in
Arthritis and Rheumatism, 2019.

[25] S. Mehrabi, “‘Temporal pattern and association discovery
of diagnosis codes using deep learning,” in Proc. Int. Conf.
Healthcare Informat, 2015, pp. 408–416.

[26] X. Shi, “‘Multiple disease risk assessment with uniform
model based on medical clinical notes,” IEEE Access, vol. 4, pp.
7074–7083, 2016.

[27] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J.
Sun, Doctor AI: Predicting clinical events via recurrent neural
networks. 2015.

[28] S. Wu, “‘Modeling asynchronous event sequences with
RNNs, ,’” J. Biomed. Informat, vol. 83, pp. 167–177, 2018.

[29] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep
patient: An unsupervised representation to predict the future of
patients from the electronic health records,” Sci. Rep., vol. 6, no.
1, pp. 1–10, 2016.

[30] L. Ali, C. Zhu, Z. Zhang, and Y. Liu, “Automated detection
of Parkinson’s disease based on multiple types of sustained
phonations using linear discriminant analysis and genetically
optimized neural network,” IEEE J. Transl. Eng. Health Med.,
vol. 7, pp. 1–10, 2019.

[31] S. Farzi, S. Kianian, and I. Rastkhadive, “Diagnosis of
attention deficit hyperactivity disorder using deep belief network
based on greedy approach,” in 2017 5th International Symposium
on Computational and Business Intelligence (ISCBI), 2017.

[32] K. Adem, S. Kilicarslan, and O. Cömert, “‘Classification
and diagnosis of cervical cancer with softmax classification with
stacked autoencoder,” Expert Syst. Appl, vol. 115, pp. 557–564,
2019.

[33] U. Hwang, S. Choi, H.-B. Lee, and S. Yoon, Adversarial

training for disease prediction from electronic health records with
missing data. 2017.

[34] J. Latif, C. Xiao, S. Tu, S. U. Rehman, A. Imran, and A.
Bilal, “Implementation and use of disease diagnosis systems for
electronic medical records based on machine learning: A
complete review,” IEEE Access, vol. 8, pp. 150489–150513,
2020.

ACKNOWLEDGMENT

I would like to extend my deepest gratitude to all the
supervisors and lecturers who have significantly contributed
to this research. Their guidance and support throughout this
study have been invaluable.

63

 Journal website:

